

Control of codling moth and oriental fruit moth with MADEX® TWIN

a recently selected CpGV isolate

Iris Kraaz, Markus Züger, Daniel Zingg - Andermatt Biocontrol, Switzerland ABIM 2011

CpGV, Cydia pomonella Granulovirus

- First isolated in Mexico in 1964
 → CpGV Mexican isolate
- Kills the larvae by ingestion
- > 100.000 ha sprayed every year in Europe
- Excellent population control
- No negative effects on non-target organisms
- Narrow host-range

Oriental fruit moth (OFM) a major pest in stone and pome fruit

- A key pest in commercial stone fruit
- Frequent migration to pome fruit orchards
- Ability to complete the life cycle on secondary hosts such as apple and pear in some regions

Overview

- Selection of a new isolate in the laboratory
- Testing and validation of Madex Twin: Field trial examples
- Average performance of the product in two field trial seasons
- Application strategies
- Conclusions

Development of a new CpGV isolate effective against OFM and CM

- Selection on *Grapholita molesta* using a confidential, internal selection process
- REN profile of ABC V22 is similar to CpGV-M with additional faint submolar bands
- ABC V22 is a CpGV-M like genome type and a second genome type is visible in some parts of the sequence
- Patent for ABC-V22 is submitted

Bioassay on Grapholita molesta

LC 50 [OB/g _{diet}]	95% lower limit	95% upper limit	relative potency	95% lower limit	95% upper limit
130 190	81 686	199530	1	0.7	1.5
2892	1799	4 4 4 4	45	29.5	69.1
	[OB/g_{diet}] 130 190	[OB/g _{diet}] lower limit 130 190 81 686	[OB/g_diet]lower limitupper limit130 19081 686199 530	[OB/g_diet]lower limitupper limitpotency130 19081 686199 5301	[OB/g_diet]lower limitupper limitpotencylower limit130 19081 686199 53010.7

Laboratory bioassay, Andermatt Biocontrol

Bioassay on Cydia pomonella

Laboratory bioassay, Andermatt Biocontrol

Product testing and validation of MADEX® TWIN

Field trial examples from 2010/2011

Product testing and validation: OFM on peach in California, USA 2011

 2 treatments per generation during 2 generations

 fruit assessment before harvest

Certis USA, 2011

Product testing and validation: Field trial examples OFM on peach

No.	Treatment	Applied rate	Applicatio	n timing			
			11/5	20/5	28/5	15/7	26/7
1	Madex Twin	50 ml/ha	~	~	~	~	~
2	Madex Twin	100 ml/ha	~	~	~	~	~
3	Madex Twin	200 ml/ha	~	~	~	~	V
4	Calypso 480 SC (Thiacloprid)	0.25 l/ha	~	~	~	~	V
5	Untreated control						

- Randomized complete block design, 4 replicates/ treatment
- Assessment of damage:
 - on 100 shoots/plot after 1st OFM generation
 - on 200 fruits/plot before harvest (stopped vs. active damage)

Product testing and validation: Field trial examples OFM on peach

Results: Fruit damage control in peach

Biocont, Slovakia, 2010

Product testing and validation: Field trial examples OFM on nectarine

No.	Treatment	Applied rate	Application timing				
			9/6	14/6	17/6	22/6	29/6
			100% eggs	Majority egs	90% eggs, 10% larvae	70% eggs, 30% larvae	40% eggs, 60% larcae
1	Madex Twin	100 ml/ha		В		D	E
2	Bt kurstaki	1 kg/ha		В		D	Е
3	Prodigy (Methoxyf.) Calypso (Thiacloprid) Trebon Star (Etofenprox)	50 ml/hl 25 ml/hl 700 ml/hl	А		С		E
4	Untreated control						

- Randomized block design, 5 replicates/treatment
- Assessment of damaged fruits at harvest. Exclusion of damage from 1st generation

Product testing and validation: OFM on nectarine, Italy 2010

- Assessment of damaged fruits at harvest
- Exclusion of damage from 1st generation
- 3 treatments from G2 to harvest
- Chem. treatment: Thiacloprid, Methoxyfenozide, Etofenprox

Intrachem Bio Italia, 2010

Legende???

Product testing and validation: Field trial examples CM on apple

2	No.	Treatment	Applied rate	Application timing					
				4/6	15/6	28/6	5/7	12/7	22/7
	1	Madex Twin	100 ml/ha	~	~	~	~	~	~
	2	Madex Top	100 ml/ha	~	~	~	~	~	~
1	3	Madex	100 ml/ha	V	~	~	~	~	~
	4	Untreated control							

- Randomized block design, 4 replications
- Assessment of damage:
 - After G1 on 4.8.2010 active and stopped damage on 200 fruits/plot

Andermatt Biocontrol

Product testing and validation: Field trial examples CM on apple, Switzerland 2010

- assessment of damaged fruits at harvest
- 6 treatments from G1 to harvest

Andermatt Biocontrol, 2011

Product testing and validation Field trials with MADEX TWIN in 2010/2011

Product testing and validation Average efficacy level of Madex Twin, at 100ml/ ha

		Apple CM	Apple OFM	Peach OFM	Nectarine OFM
and the second	Average shoot strike reduction	-	-	56% (n=8)	60% (n=2)
1	Average reduction of fruit damage (stopped and deep damage)	66% (n=5)	76% (n=2)	65% (n=9)	67% (n=3)
	Average reduction of deep damage	86% (n=7)	n.d.	85% (n=1)	n.d.

Strategies against OFM in stonefruit

100 ml/ha = standard dose

- From earliest generation on in strong infestation situations
- Start from G2 on is possible
- Focus on hatching of larvae
- In IPM spray programme
- In combination with mating disruption

Strategies against CM/ OFM in pome fruit

- Same strategy as with MADEX against CM
- Late season fruit damage of OFM in apple/pear may not be fully prevented. But hibernating larvae are supposedly being reduced.
- In combination with mating disruption
- In alternation with other insecticides

Spray MADEX TWIN already on the first generation

Application with MADEX Twin on the first generation has the following advantages against oriental fruit moth:

- First generations of OFM are only attacking twigs
 killing of larva without fruit damage
- Larva of first generations emerge several times out of twigs
 probability of getting in contact with MADEX Twin is increased
- Reduction of damage caused by summer generation
 population control

Conclusions

• Laboratory bioassays:

- ABC V22 > CpGV-M on OFM
- ABC V22 = CpGV-M on CM
- REN analysis: ABC V22 similar to CpGV-M
- Genome analysis: ABC V22 predominantly a CpGV-M like genome type
- The new isolate is patent pending
- Inclusion on Annex I ok

• Field trials:

 ABC V22 effective against CM and OFM at standard CpGV-M rate of 100ml/ha

Thank you for your attention

Acknowledgement

Intrachem Bio Italia S.p.A. Agrichem Bio Spain Biocont Compo France Certis USA Prof Johannes Jehle, JKI All other partners for trials

