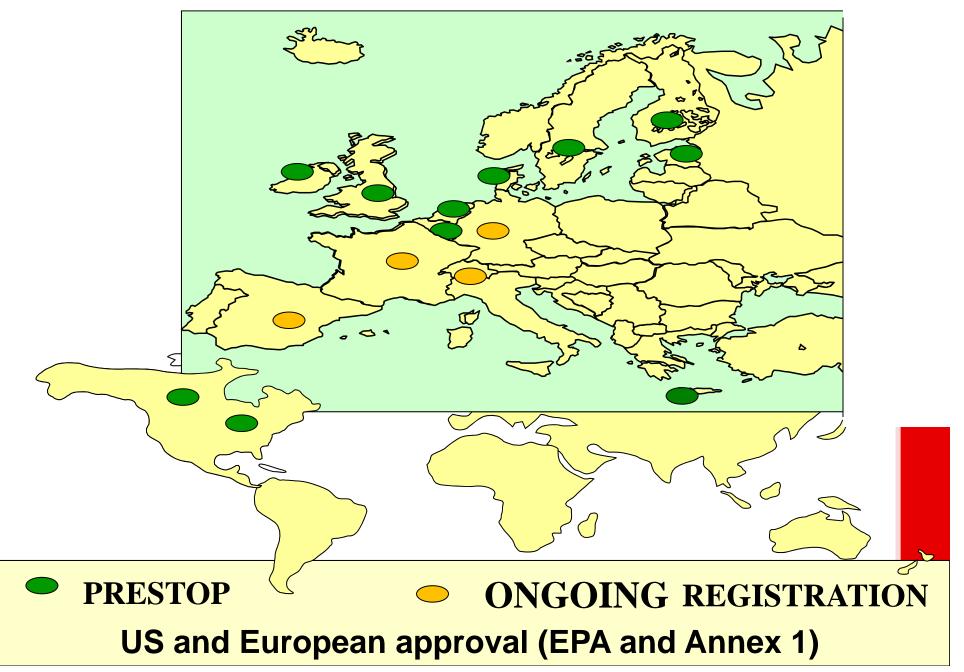
Efficacy of Prestop[®] against soil borne and foliar pathogens on European crops

Core business : Production of micro-organisms

Plant Care Unit : Ithec and Verdera

Biological plant protection products and biofertilizer for agriculture, horticulture and forestry

Biological plant protection products for horticulture



Prestop

based on *Gliocladium catenulatum* strain 1446

Current Registrations of Prestop

Ecological characteristics of strain J1446

 Isolated from Finnish field soil within a Nordic project on biocontrol of seed-borne pathogens of cereals 1989-93

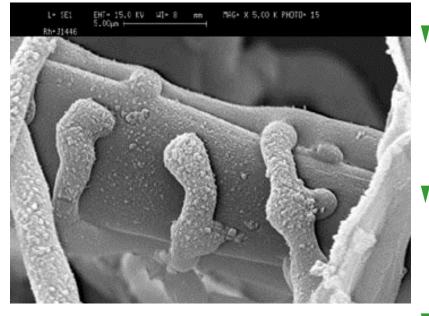
• Biological activities : between 6 and 30°C

• Able to survive below 6°C and above 30 °C

 Not harmfull to beneficial insects, nematodes or pollinators

Gliocladium catenulatum J1446

Ecological characteristics of strain J1446


Gliocladium catenulatum J1446 is able to colonize leaf and root surface

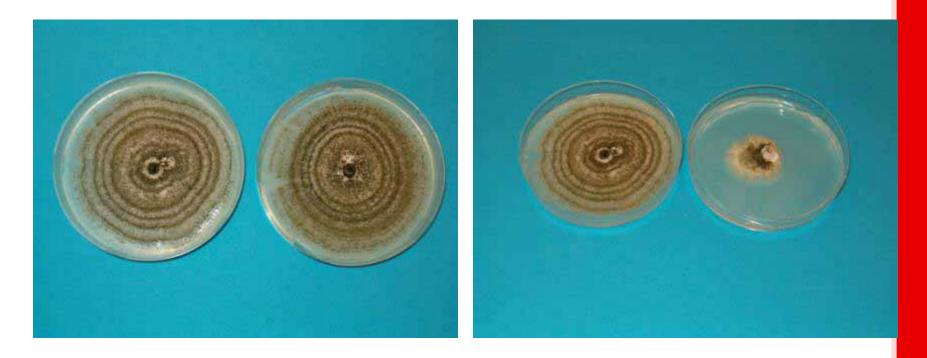
- *G. catenulatum* growing on water agar, isolated from cucumber roots.
- *G. catenulatum* growing on potato dextrose agar, isolated from pelargonium leaves.

Modes of action of *G. catenulatum* J1446

Various modes of action are involved

- Hyperparasitism seems to play an important role :
 - Detection of enzyme activities
 - Observation of mycelium interaction
- Competition for nutrients and space
 - Colonization of root and foliar surfaces
- Antibiosis not shown

Weak probability of development of pathogen resistance

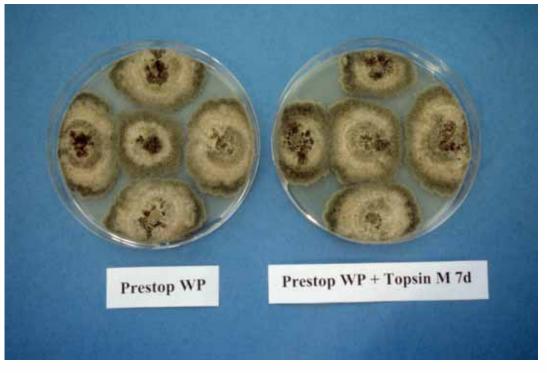


The compatibility between *Gliocladium catenulatum* and chemical pesticides

In vitro

Teldor (fenhexamid)

Switch 62.5 WG (cyprodinil and fludioxonil)



The compatibility between *Gliocladium catenulatum* and chemical pesticides

In vivo

Full compatibility with Topsin M (tiophanate-methyl) on cucumber when sprayed at the same day

Active ingredient	Examples of commercial name	Interval (days)
Azoxystrobin	Amistar	2
Benomyl	Benlate	4
Boscalid et krésoxim-méthyl	Collis	0
Bitertanol	Baycor	2
Carboxin	Cadan, Oxalin, Vitavax	4
Fenhexamide	Teldor	0
Fludioxonil-cyprodinil	Switch	4
Guazatine	Panoctine	2
Hymexazol		7
Imazalil	Fungaflor	2
Iprodione	Chipco Green 75WG / Rovral	4
Krézoxym-méthyl	Stroby, Candit	0
Mancozep	Dithane, Mancozeb	4
Mépanipyrim	Frupica	0
Métalaxyl-M		0
Myclobutanil	Systhane 24 EC	0
Penconazole	Topenco , Topas 100 EC	1
Phosétyl-aluminium	Aliette	0
Prochloraz	Sportak 45 HF	7
Procymidone	Fortress 500	0
Propamocarp Hydrochloride	Previcur® Energy, Previcur N®	0
Propiconazole + prochloraz	Basso	7
Pyraclostrobin+boscalid	Signum	2
Pyriméthanil	Scala	1
Sulfur		0*
Thiophanate méthyl	Topsin M	2
Toclofosmethyl	Rizolex	2
Thiram	Thirame, TMTC, TMTD	4
Triadiméfon	Amiral, Baylaton	0
Triadiménol	Baytan	2
Triforine	Funginex	2
Trifloxystrobin +propiconazole	Stratego	4
Triflumizole		0
Vinclozolin	Ronilan	4

Compatibility between *Gliocladium catenulatum* and fungicides

Compatibility between *Gliocladium catenulatum* and insecticides

Active ingredients	Days
Bacillus thuringiensis	0
Beauveria bassiana	0
Buprofezin	0
Cypermethrin	2
Deltamethrin	0
Diazinon	0
Fenbutatin oxide	2
Malathion	0
Metharizium anisopliae	0
Mevinphos	0
Permethrin	2
Pirimicarb	0
Pyrethrins	0

USES in CONVENTIONAL, IPM and ORGANIC CROPS

- 1. Treatments of substrates against *Pythium*, *Phytophtora*, *Rhizoctonia*, *Fusarium*
- 2. Treatments of vegetable, ornamental and aromatic plants, against *Pythium*, *Phytophthora*, *Rhizoctonia et Fusarium*
- 3. Treatments against black rot of cucumbers (Didymella)
- 4. Treatments against grey mould caused by *Botrytis* on tomatoes, green pepper, cucumbers, strawberries, and ornamental plants

Biological activity of *Gliocladium catenulatum* strain J1446 with Prestop[®] formulation

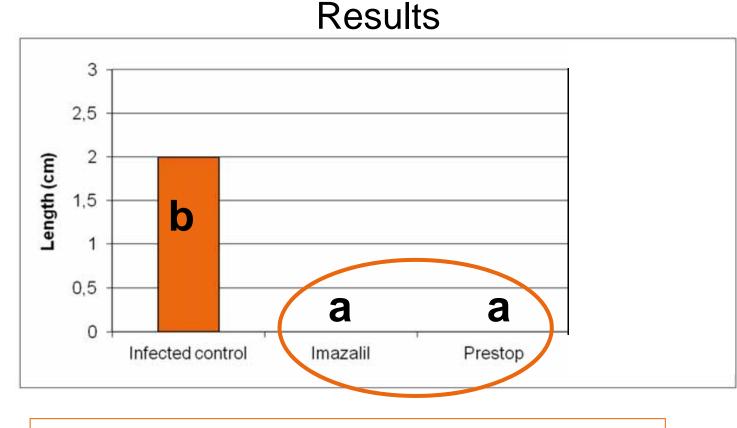
Foliar diseases

Prestop[®] on tomatoes against *Botrytis cinerea*

- In the Netherlands and Belgium, annual crop losses in spring and autumn (up to 25%)
- Airborne spores always available
- Growth conditions:
 - high moisture (> 87%)
 - weak plant tissues (pruning wounds)

Trial in 2008 : Prestop[®] on tomatoes against *Botrytis* (spraying on stems)

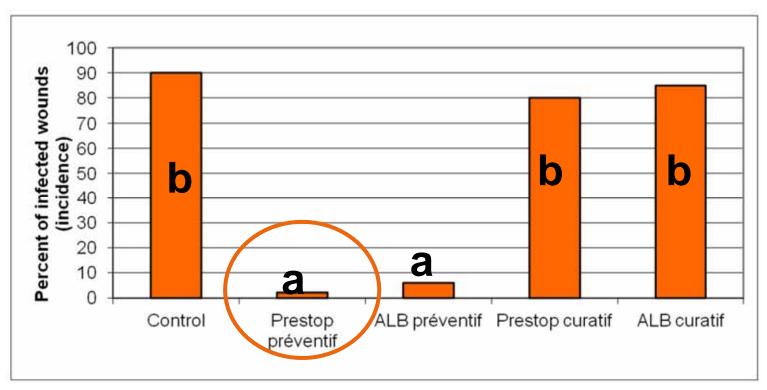
• Protocol :


- Tomato crop 25 weeks old
- The rate of Prestop® was 100 g suspension per 1000 plants (20ml per stem) per application
- Three times replicated (wk 42, 44, 46)
- Pruning wounds preventively treated by spraying the stems and then inoculated with *Botrytis* spore suspension

LALLEMAND

- Treated wound covered during 48 hours
- Lesion development on wound

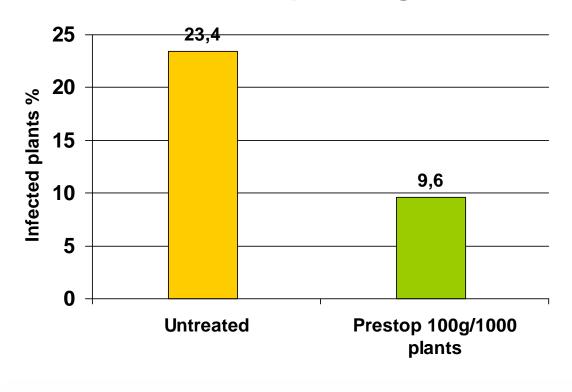
Trial in 2008 : Prestop[®] on tomatoes against *Botrytis* (spraying on stems)


Preventive application of Prestop = Total protection like chemical treatement

LALLEMAND

UR, Wageningen, Nederland, Autumn 2008

Trial in 2011 : Prestop[®] on tomatoes against *Botrytis* (spraying on wounds)


Results

Prestop in the control of gummy stem blight of cucumber (*Didymella/Mycosphaerella*)

Spray of the stems 6 and 53 days after planting

Trials in 2011 and 2012 : Low volume spraying of Prestop[®] in foliar treatment of tomatoes

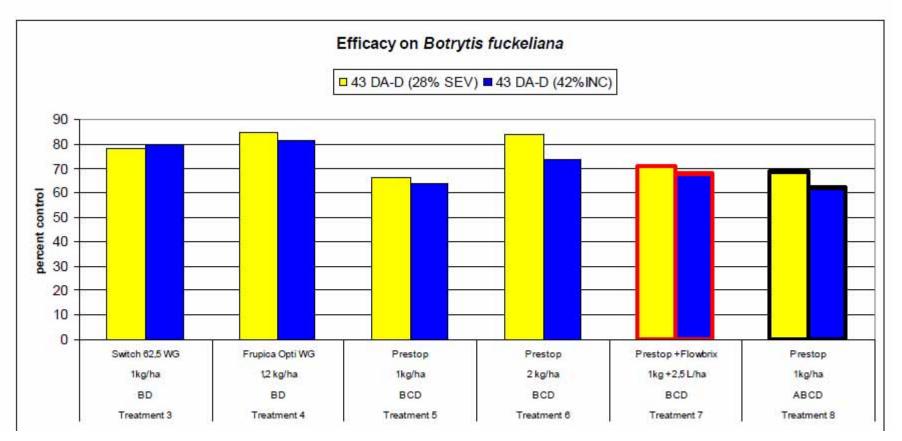
- LV-spraying (fine fog) was used in a commercial tomato cultivation in Holland
- The pressure was 6 bars and the solution was pumped through a filter-nozzle combination
- An excellent colonization of *Gliocladium* in the foliage was observed after LV-spraying:
 - *Gliocladium* index (0-3) in larger leaves: average **2.8**
 - Gliocladium index (0-3) in smaller leaves: average 2.8
- No observation of *Botrytis* (*in vitro* and in the greenhouse)

Novel applications on grapevine

- Trials in 2010 and 2011 in Austria by Kwisda
 - 2010 : test at 5 kg
 - 2011 : test at 1 kg and 2 kg with or without copper
 - 1. Untreated Check

2. Switch WG	1 kg/ha	BCD
3. Frupica Opti WG	0,8 kg/ha	BCD
4. PRESTOP	1 kg/ha	BCD
5. PRESTOP	2 kg/ha	BCD
6. PRESTOP + Cu ⁺⁺	1 kg/ha	BCD
7. PRESTOP	1 kg/ha	ABCD

- A ... mid flowering BBCH 65-67
- B ... Berries beginning to touch, BBCH 77 (36 and 22 DA-A)
- C ... Begin of ripening, BBCH 79- 81 (15 and 33 DA-B)
- D ... Softening of berries, BBCH 85 (31 and 8 DA-C)
- Water volume: 500 and 1000 L/ha.



Control of grapevine grey mould : 1st site

Trial Location: Styria/AT Variety: Zweigelt

Kwisda experiment

Application	A	В	С	D
Date	15.06.2011	07.07.2010	09.08.2011	17.08.2011
BBCH	67	77	81	85
Frupica		х	x	х
Switch	· · · · ·	x	x	х
PRESTOP	(x)	x	х	х

Control of grapevine grey mould : 2nd site

Kwisda experiment : Similar results with Zweigelt variety in Lower Austria

Biological activity of *Gliocladium catenulatum* strain J1446 with Prestop[®] formulation

Root diseases

Pythium, Phytophtora, Rhizoctonia, Fusarium

Prestop[®] in the control of root diseases on sweet pepper, applied via drip irrigation

Prestop in the control of damping off (*Pythium* and *Rhizoctonia*), 6 weeks after sowing

Prestop[®] spraying on *Pelargonium* infected by *Phytophtora*

Peat

Phytophthora

Phytophthora + Prestop WP Potting soil

Phytophthora

Phytophthora + Prestop WP

Methods of applications

- Application methods for root and foliar diseases :
 - Spraying of the growing medium

Incorporation in the liquid solution for hydroponic cultures and drip

- Spraying with standard equipement at normal and low volume (LVspraying system)
- Spray the pruning wounds with a small hand-sprayer against Botrytis on tomatoes

Conclusions:

Gliocladium catenulatum strain J1446 as a biocontrol agent

- Strain J1446 controls several root diseases as well as foliar pathogens on vegetable, fruit, ornemental and aromatic plants
- Strain J1446 is compatible with many other plant care products
- Prestop is registrated in American and European countries
- Prestop is widely used in greenhouse and more and more in field
- Formulation is adapted to standard and alternative systems of application

Thank you for your attention

