Selecting a good wound colonizer for life cycle protection of grapevine against *Phaeoacremonium aleophilum* and *Phaeomoniella chlamydospora*

Joost Bovijn

Biological Products for Agriculture

ESCA DISEASE IN GRAPEVINE

- Complex disease, no evidence for a single pathogen
- 2 pathogens responsible for vascular disorder related to Esca disease: *Phaeomoniella chlamydospora (Pch), Phaeoacremonium aleophilum* (Pal)
- Increasing problem in Europe: increase in affected vineyards over the last 10 years
- No chemical solutions available
- Ways of infection:
- Pal and Pch produce conidia from early in the season to late summer
- Conidia are spread via the air (wind, rain)
- Wounds can be colonized by Pal and Pch
- Pal and Pch grow in vascular tissue

ESCA DISEASE IN GRAPEVINE

ESCA DISEASE IN GRAPEVINE

T. ATROVIRIDE SC1 IS A GOOD WOUND COLONIZER

- Fungus isolated from decaying hazelnut wood in Northern Italy
- Selected based on excellent wood colonizing properties
- Antagonist of Pal and Pch:
 - competition for space and nutrients
 - production of lytic enzymes degrade pathogen mycelium and spores
 - mycoparasite

T. atroviride SC1 around *Armillaria mellea* 05BV hypha

Untreated hypha

T. atroviride SC1

WAY OF APPLICATION

Untreated

- Application: by spraying *T. atroviride* conidia on wound
- Applied on wounds after pruning when risk of pathogen infection is high

Treated

EFFICACY TRIALS

• Artificial inoculation of pathogen(s) after application

Objects	Application	Inoculation	Inoculation
	T. atroviride	with Pal	with Pch
	SC1		
Untreated inoculated Pal	-	X	-
Untreated inoculated Pch	-	-	x
Treated inoculated Pal	X	X	-
Treated inoculated Pch	X	-	x

METHODOLOGY

- Sampling of wood stalks 5-7 months after application
- Microbiological analysis of wood stalk at 5 different distances from pruning wound
- Check for *T. atroviride* SC1, Pal and Pch (PCR-analysis, morphological determination)

RESULTS

T. atroviride SC1 is able to establish stable populations in pruning wounds ensuring efficient protection against Pal and Pch

Summary of 6 trials set up between 2009-2012 (Italy, Germany, France, Spain)

LIFE CYCLE PROTECTION

THANK YOU FOR YOUR ATTENTION

Bi-PA in collaboration with Belchim Crop Protection

Biological Products for Agriculture

