Bioherbicides development based on essential oils

Prof. H. Jijakli

mh.jijakli@uliege.be

CONTENT

- 1. Introduction
- 2. Selection
- 3. Modes of action
- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

Urban and Integrated Plant pathology laboratory

- Diagnostic and surveillance
- Plant-microbiome interactions
- Urban agriculture
- Biological control methods

Supporting R & D of companies

40 (inter)national programs on bioprotection

500 publications 2 professors <u>30 researchers</u>

7 patents

5 technicians

4 Spin off companies

http://www.agricultureurbaine.be

http://www.phytopathologie.be

Selection of effective microbial strains

1991

Candida oleophila (strain O)

Efficient against wound parasites (B. cinerea and P. expansum)

Micro-organism application followed by *B*. *cinerea* inoculation Non treated control inoculated with *B. cinerea*

Registration and commercialisation of *C. oleophila* strain 0 by LESAFFRE (AGRAUXINE)

US submission : 2007 US registration : 2009

EU submission : 2005 EU registration : 2013 (inclusion in annex 1) No RML

National Registration UK, France, Austria, Netherlands, Italy

Production by Agrauxine - Lesaffre company

Distribution

for postharvest protection for banana, citrus, apples and pears

Evolution of weed control practices

- Herbicide-resistant of weeds
- Retailer and consumer reluctance to chemical residues and public concern for environmental safety
- Limitation and withdrawal of authorized active ingredients (Glyphosate, Diquat,...)
- Development of novel practices (e.a. Mechanical weeds killing) or products (Pelargonic acid)
- Development of new marketing labels

10 years of R&D on essential oils as plant protection tools

- 20 100 molecules
- Classification based on main compounds :
 - Terpenic EOs
 - Monoterpen: C₁₀H₁₆
 - Harbouring various chemical functions
 - Ex: Alcool, phenol,...
 - Aromatic EOs
 - Phenyl propanoide
 - Harbouring various chemical functions
 - Ex : Aldehyde

Essential oils are natural substances (botanicals)

CONTENT

1. Introduction

- 2. Selection
- 3. Modes of action
- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

Pre-selection considering plant protection market and EO market

• Non-selective Herbicides

Chemicals– Glyphosate, Diquat, Carfentrazone, Hormones
Biologicals – Pelargonic Acid, Acetic Acid

• Professional & Non-Professional

OrganicConventional

Pre-selection considering plant protection market and EO market

 \circ Literature

 \circ Composition

Majority of the chemical families (Terpens, phenol, alcohol)

 \circ Cost

 \circ Availability

Pre-selection considering plant protection market and EO market

Chemotype

Chemotype = intraspecific variation Chemotype of *Thymus vulgaris*

Selection of our suppliers according to the right chemotype and its stable composition

Source graph : Baser, K. H. C., & Buchbauer, G. (2015). *Sources of essential oils*. *Handbook of Essential Oils: Science, Technology, and Applications, Second Edition*, p.52. https://doi.org/10.1201/b19393

Selection under greenhouse conditions

Preselection of 22 EOs for herbicidal action and test on :

-Monocotyledons : grass (Festuca 70%, Lolium 30%)

- Dicototyledons : Urtica dioica, Chenopodium, Papaver, Trifolium incarnatum

Selection under greenhouse conditions

Preselection of 22 EOs for herbicidal action and test on :

Basic Formulation

- active substance
- chemical adjuvants

Selection under greenhouse conditions

Activity against

	Type of major peak	Monocotyledon	Dicotyledon	Mosses	Horsetail
EO1	Aromatic	+	++++	++++	++++
EO2	Aromatic	++++	++++	undertermined	undertermined
E03	Terpenic	++++	+	undertermined	undertermined

Efficacy of EO1

EO2

Untreated

Efficacy of EO1

AEPO copyright

EO3

CONTENT

- 1. Introduction
- 2. Selection
- 3. Modes of action
- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

in silico analysis – 3D Modelling

Terpenic compound with 3 different conformations naturally present in Essential oils

in silico analysis – Membrane insertion

Representative compounds in Essential oils

Low energy = most probable position in the membrane (IMPALA method) 10 8 6 Energie [kcal/mol] 2 0 -20 -30 20 30 -2 -4 -6 Position in the membrane (Å)

Aaronomical Plant Extracts & Essential Oils

in silico analysis – Lipid-EO molecules interactions

SITOSTEROL

PLPC

INSERTION AND INTERACTION STUDIES COULD LEAD TO

- RIGIDIFIED CELL MEMBRANE
- PERTURBATED CELL MEMBRANE
- CASCADE REACTIONS INSIDE THE CELLS

Modes of action after membrane damage

- Cytotoxicity
 - No specific targets

Lipophiles membrane damage cytoplasm coagulation lipids and proteins damages
Cellular lysis mitochondrial damages

- Importance of phenols aldehydes and alcohols
- Risk of weed resistance reduced
 - Several targets affected by EOs

Modes of a

- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

CONTENT

Importance of the formulation

- Influences the modes of action
- Protects the EOs against the environment
 - Volatilization
 - UV radiation
- Influences the stability

It affects the efficacy

Formulation from chemical to biological adjuvants OPE

Microscopy

Formulation from chemical to biological adjuvants OOG

Formulation reducing volatility

Formulation from chemical to biological adjuvants

AEPO copyright

CONTENT

- 1. Introduction
- 2. Selection
- 3. Modes of action
- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

Efficacy trials under field conditions 2019 OPEC

Agronomical Plant Extracts & Essential Oils

Monocotyledons : 4 Poa annua (POAAN)

Lollium perren (LOLPE)

Festuca rubra (FESRU)

Echinochloa crus-galli (ECHCG)

Efficacy trials under field conditions 2019 OPEC

Dicototyledons : 12 Veronica persica (VERPE)

Trifolium repens (TRFRE)

Taraxacum officinale (TAROF)

Plantago lanceolata (PLALA)

Matriciaria chamommilla (MATCH

Geranium dissectum (GERDI)

Lamium purueum (LAMPU)

Daucus carota (DAUCA)

Sonchus arvensis (SONAR)

Chenopodium album (CHEAL)

Fumaria officinalis (FUMOF)

Leucanthemum vulgare (CHYLE)

AEPO copyright

Aaronomical Plant Extracts & Essential Oils

Efficacy trials under field conditions 2019 OPEC

June 2019 in Belgium

Sown weeds in fields

Application of HE1 with final formulation

Application of HE2 or HE3 with suboptimal formulation

2 applications (10 days between applications)

4 replicates

EO1 – Belgium

Efficacy trials under field conditions 2019 Ope

Agronomical Plant Extracts & Essential Oils

^M E01 − Belgium

• Similar results with EO1 in South of France and UK

• Home & garden market to treat grass against Dicot and mosses

EO2 – Belgium

EO2 – Belgium

Μ

0

• Similar results with EO2 in South of France and UK

• Home & garden and professional markets as non-selective herbicide

Agronomical Plant Extracts & Essential Oils

- APEO is a spin off of Gembloux Agro-Bio Tech (Uliege)
- A **team** of 2 seniors (scientist in plant protection & business developer) and one junior researcher specialist in organic chemistry
- **Mission** is to create/find, develop, formulate, register and "go-to-market" (directly or indirectly) of innovative products taking care of environment & people
- **Business model** is based on "organic growth" built on several solutions (3 EOS & 1 PE, others to come) being developed, registered & sold by either APEO or 3rd parties partners
- APEO is among the 7 nominated to the Blum Award

AEPO copyright

CONTENT

- 1. Introduction
- 2. Selection
- 3. Modes of action
- 4. Formulation
- 5. Efficacy trials
- 6. Conclusions

- Screening methods are crucial to start with the good candidates. We must applied in parallel 3 criteria (cost and quality production, efficacy and tox)
- Mode of action and formulation are essential to overcome some drawbacks of EOs and insure stability of the product and easy application
- 3 essential oils are developed as biological herbicides :
 - ✓ EO1 : Home & Garden (semi-selective)
 - ✓ EO2 : Home & Garden and professional (non-selective)
 - ✓ EO3 : to be determined

Phytopathologie

Centre de Recherches en Agriculture Urbaine

Simon Dal Maso

