

data-driven precision IPM in greenhouse crops from vision to execution

Karel Bolckmans

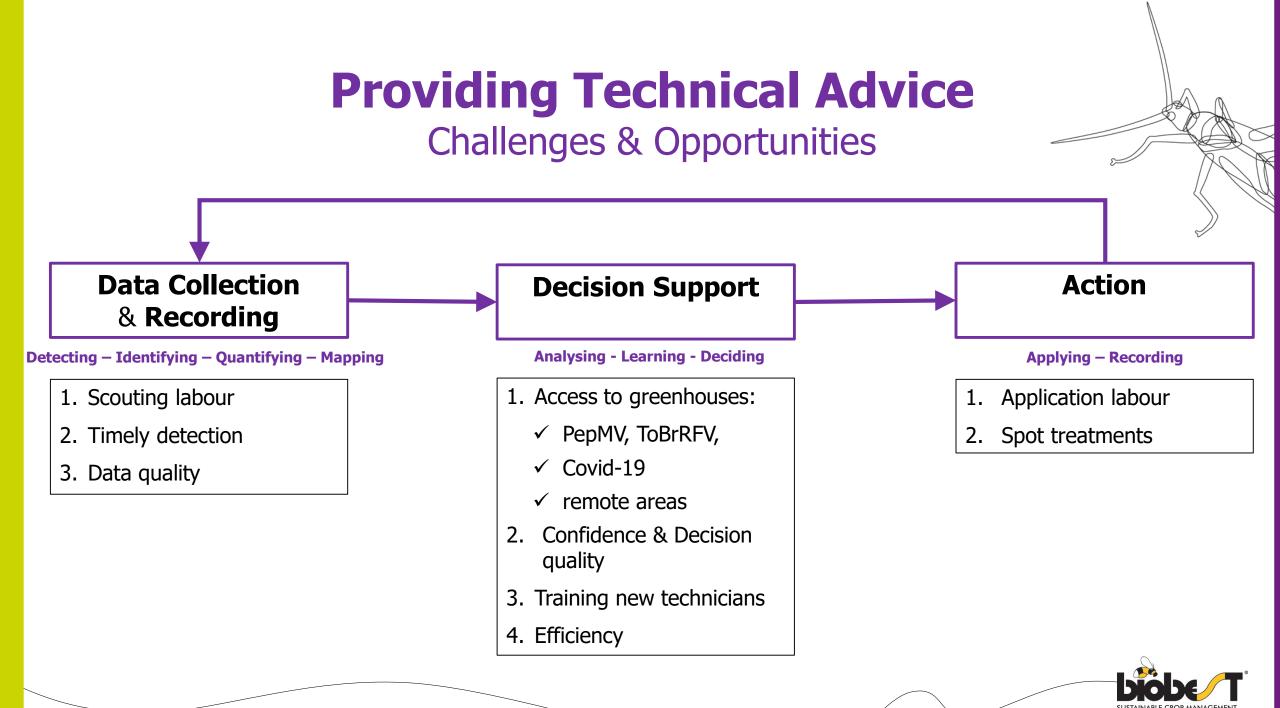
ABIM 2021 October 18th-20th

Patterns in Greenhouse Production

- High concentration of **buying power** in a small number of retailers.
- Shorter value chains ("cut out the middle man")
- Retailers want to deal with as few suppliers as possible:
 - 1. Entire category
 - 2. All-year-round
 - 3. Always entire volume (reliability)
 - 4. Top quality: (1) cosmetic quality, (2) taste, (3) residue poor/free, (4) carbon neutral
 - 5. Best price

2

- Fewer but larger, multisite growers
 - Change of ownership structure
 - Increasing complexity and risk \rightarrow **data-driven growing**
- \diamond Labour shortage, quality and cost \rightarrow **robotization**
- ♦ Carbon footprint + Energy cost $\rightarrow \Delta$ climate management (e.g. closed greenhouse, vertical agriculture, ...)



"The Autonomous Greenhouse"

Data Is Transforming How Growers Operate

The grower's challenge: **continuously steering** the plants for maximum production through dynamic **climate management** (T, RH, [CO₂], light), **fertigation management** (irrigation, pH, EC, fertiliser mix, ...) and **crop management** (leaf picking, lowering plants, cluster pruning, ...) and all the **interactions** between them, while keeping **energy cost** and **labor cost** under control \rightarrow very complex interactions \Rightarrow **top sport** !!!

	Today	 Visual inspection. Grower's experience. Input from a trusted advisor, such as a sales rep, who has access to otherwise inaccessible information and knowledge. Supplier product information.
In the (verv)	near future	 □ Data-enabled decision making based on: ✓ real-time data collection (sensors, camera's, computer vision, digitization, IoT, drones, autonomous vehicles,), ✓ advanced data analytics, artificial intelligence, algorithms (descriptive, diagnostic, predictive and prescriptive analytics), ✓ sharing of best practices via digital farming applications and platforms. □ Automated execution of farm tasks → robotization
	3	biobe

Data-driven Precision IPM WHAT?

1. Data collection & recording (identity, location, severity of pest & beneficials)

- 1) Human eye (Crop Scanner (Agritask), Ecoation-OKO)
- 2) Sensors and Camera's (RGB, thermal, hyper-spectral)
 - a) Direct observation of pests (PATS)
 - b) Indirect observation (plant stress) (Ecoation–Plant Health Sensor) \rightarrow 2-step approach
 - c) Traps (TrapScanner)
- 3) High-resolution climate sensors (T, RH, [CO2], light intensity, ...)

Data-collection and Recording

KNOWLEDGE

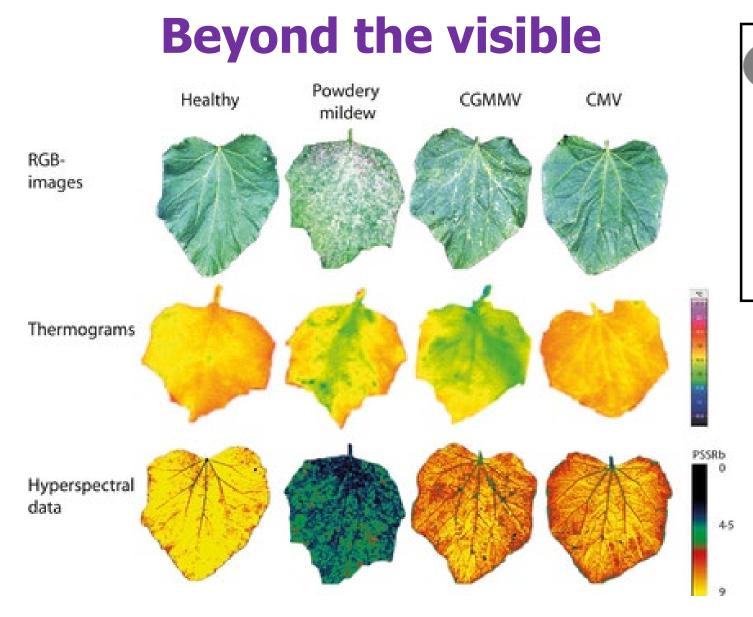
microclimate and 360 8K Virtual Walk

Risk projection, digital scouting/treatment, recordkeeping, and real-time live alerts.

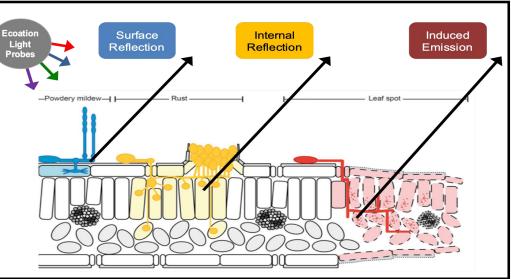
Yield Production Assessment

Fruit count, color assessment, historical yield trends, and harvest projections.

Assess quality of crop work and detect issues that affect production & labour cost.



Human + Machine KNOWLEDGE PRECISION

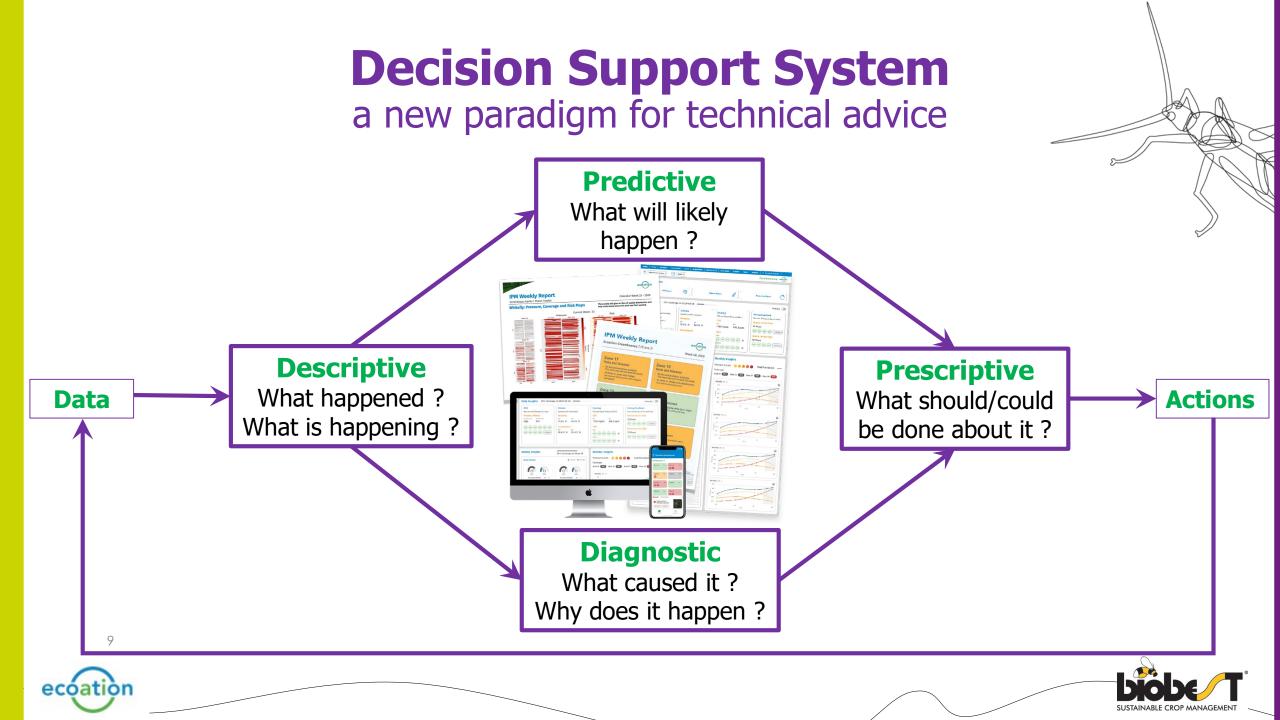


Human 🕂 Machine ecoatio PRECISION

C. A. Berdugo, R. Zito, S. Paulus, and A.-K. Mahlein, "Fusion of sensor data for the detection and differentiation of plant diseases in cucumber,"

Plant Health Sensor

Data-driven Precision IPM WHAT?


- 1. Data collection & recording (identity, location, severity of pest & beneficials)
 - 1) Human eye (Crop Scanner, Ecoation-OKO)
 - 2) Sensors and Camera's (RGB, thermal, hyper-spectral)
 - a) Direct observation (PATS)
 - b) Indirect observation (plant stress) (Ecoation–Plant Health Sensor) \rightarrow 2-step approach
 - c) Traps (TrapScanner)
 - 3) High-resolution climate sensors (T, RH, [CO2], light intensity, ...)

2. Decision Support (DSS)

- 1) Descriptive (heatmaps, graphs)
- 2) Diagnostic (root cause analysis)
- 3) Predictive (models, algorithms, thresholds \rightarrow risk maps)
- 4) Prescriptive (based on continuous recording of actions and their effects)

Data-driven Precision IPM WHAT ?

- 1. Data collection & recording (identity, location, severity of pest & beneficials)
 - 1) Human eye (Crop Scanner, Ecoation-OKO)
 - 2) Sensors and Camera's (RGB, thermal, hyper-spectral)
 - a) Direct observation (PATS)
 - b) Indirect observation (plant stress) (Ecoation–Plant Health Sensor) \rightarrow 2-step approach
 - c) Traps (TrapScanner)

2. Decision Support (DSS)

- 1) Descriptive (heatmaps, graphs)
- 2) Diagnostic (root cause analysis)
- 3) Predictive (models, algorithms, thresholds \rightarrow risk maps)
- 4) Prescriptive (based on continuous recording of actions and their effects)

3. Action

- 1) Bug Dispensers: (autonomous) vehicle, robot-arm (T-bot), ...
- 2) Spot treatments
- 3) UVC robot

Data-driven Precision IPM WHY?

- 1. <u>Reduce production **costs**</u> (labor cost+ availability of skilled labor)
 - 1) Scouting labour (2-step approach)
 - 2) (Precision) releasing beneficials and applying (bio)pesticides
- 2. <u>Maximize crop yield and quality</u> (Precision IPM)
 - 1) Even better advice with less risk (PepMV, ToBrFV, ...) through remote advice
 - 2) Less negative impact from pests and diseases
 - a) Earlier detection, allowing earlier intervention
 - b) Optimal (precision) interventions (DSS) (product, rate, timing, frequency, location)
 - 3) Less negative impact from pesticide treatments \rightarrow <u>confidence</u> through data !
 - 4) Better oversight, task management and control of work quality (large, multisite operations)
 - 5) Reduce/Eliminate pesticide residues (residue-free)
 - a) Meet legal and extra-legal requirements ('license to supply')
 - b) Ultimately provide residue-free produce

11

Thank you !

