BioFESAM project : Biocontrol of *Fusarium* **Head Blight of wheat**

Screening of antifungal activities of spore-forming bacteria, study of their impact from plant protection to food industry process

Klervi CRENN¹, Céline Hamon¹, Florence Postollec², Emeline Cozien², Marie-Laure Divanac'h², Anne-Gabrielle Mathot³, Adeline Picot⁴, Flora Pensec⁴, Monika Coton⁴, Marie Turner¹

¹Vegenov, 1040 Penn ar Prat, 29250 Saint Pol de Léon, France; ² ADRIA food technology institute - UMT ACTIA19.03, Creac'h Gwen, 29196 Quimper, France; ³ 3 Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29000 Quimper, France; ⁴ Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France

A 3 step-screening method

Step 1 : In vitro

Spore-forming strain selection as BCA (Biocontrol Agent)

- Screening of antifungal activity of 100 strains against *F. graminearum* on wheat grain-based media (selection of 12 strains) and wheat grains (selection of 3/12strains)
- Other parameters studied : taxonomic confirmation, enzymatic screening

Table 1 (below) : Description of the 3 spore-forming strain candidates for biocontrol of Fusarium head blight of wheat. Informations in green,

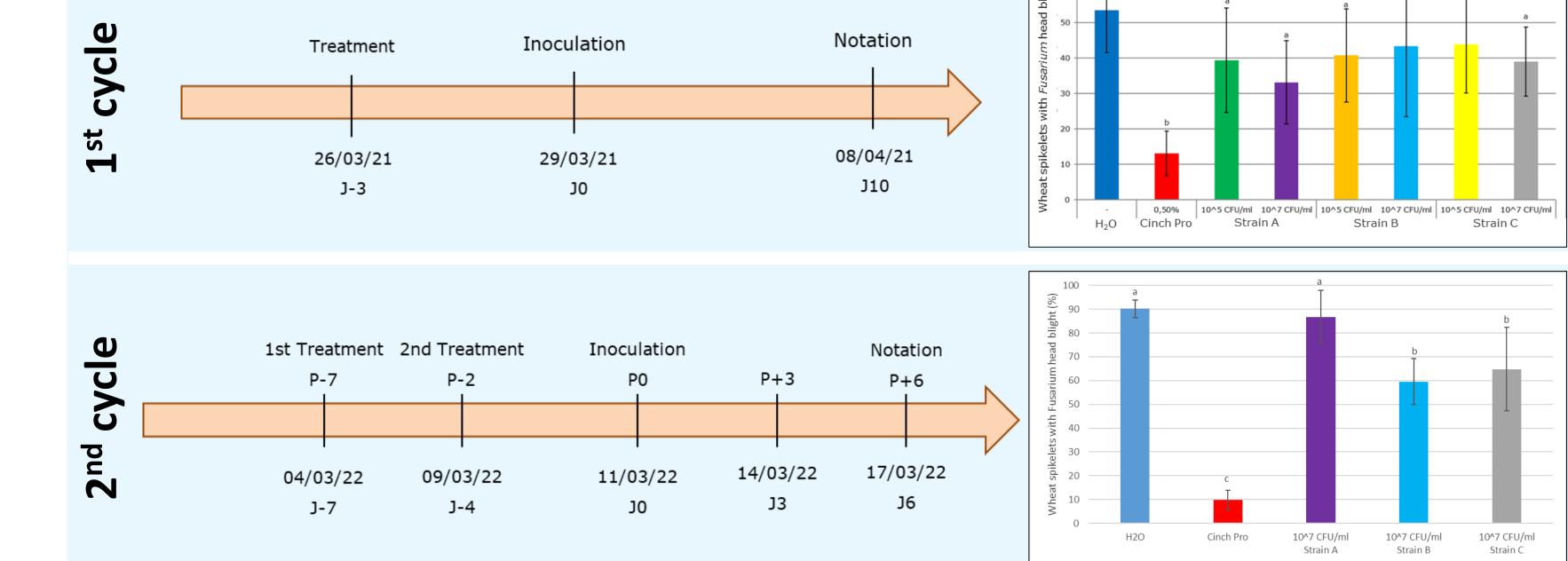


Figure 1 : Scale evaluation of *in vitro F. graminearum* growth (a) and *in vitro* screening of bacterial strains against *F.* graminearum on wheat grain-based medium (b). Evaluation of a bacterial strains on surface-disinfected wheat grains, with an active strain showing antifungal activities (c). In planta evaluation of spore-forming bacteria in regulated growth chamber (d).

orange and red correspond respectively to advantages, neutral and disadvantages caracteristics of the strains

		S		Ð	Enzymatic activities													-1)	10	ų		Method tested for spore production			
Taxonomy		at 20		Isolation date	e				<u> </u>	80	cithinase		Ð		emolysis	Irfactant	<u></u>	te (h	(log nL)	at 48h	ation ed	Rich media	Media HCT Solid	Colid modia	
		vth a	Origin		Amylase	arch	elatir	asein	utyr	uty ten		Chitin	lulos	Pectin			3iofi	th ra	nass FC/r	.e %	orula spee	(biomass) ➔ deficient		Solid media (Okhubo et	
		Grov			Am	St	Ge	Ü	Trib	Twe	Lecit	CI	Cell		Ť	Su		ľo V	Bion	Spor	Spe	media	al., 1982)	al., 2019)	
																		ש		•		(sporulation)			
Strain A Bacillus paralichenifo	mis	++	Plant	2013	-	1,3	1,9	1,5	0	1,1	-	0,7	4,2	2,9	0,0	~	2,4	0,6	8,0	58	High	6,56.10 ⁹	1,68.10 ⁹	1,3.10 ¹⁰	
Strain B Paenibacillus odorif	er	++	Meat product	<2008	-	1,1	2,0	2,8	0	1,3	+	0	2,2	2,2	0,0	veak	0,8	0,6	7,8	63	Medium	9,2.10 ⁶	8,50.10 ⁷	1,7.10 ⁸	
Strain C Paenibacillus polymy	ха	++	Dairy product	1985	-	1,1	2,0	2,7	0	0,6	-	0	3,0	2,6	0,0		0,1	0,5	7,7	89	High	3,32.10 ⁶	5,10.10 ⁷	1,3.10 ⁸	

Step 2 : In planta

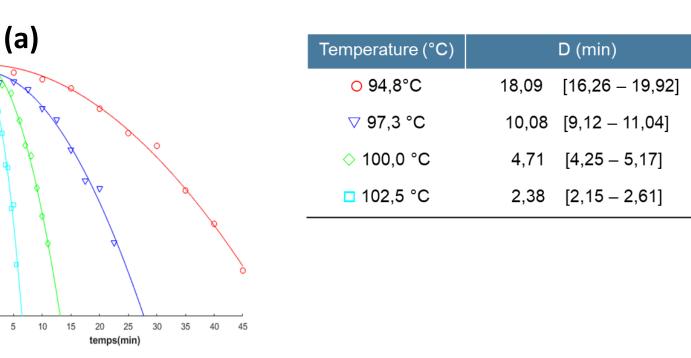
No plant protection

A small dose-effect is observed with strain A

Plant protection of strains B and C

with **34 and 28% effectiveness** (compared to H_2O) -

qPCR detection indicates that cell concentration increases for the three strains up to 8.10⁷cells/ear for strain A, and 1 to 1,5.10⁶ cells/ear for strains B and C at day 3 or 6.


Step 3 : In silico

Survival of candidate BCA strain from field to fork - a case study from grain to bread

- Growth cardinal values & spore heat resistance determination
- Simulation of bacterial survival or growth along process & shelf life for several scenario to assess safe use of potential biocontrol strains (Sym'Previus)
- → No survival of strain A during molded bread baking

Conclusion :

- 2 BCA candidate strains moderately efficient (about 30% for *in* planta trials) to control Fusarium Head Blight of wheat
- No toxicological issues (enzymatic tests)
- No survival of a close related strain during molded bread baking —

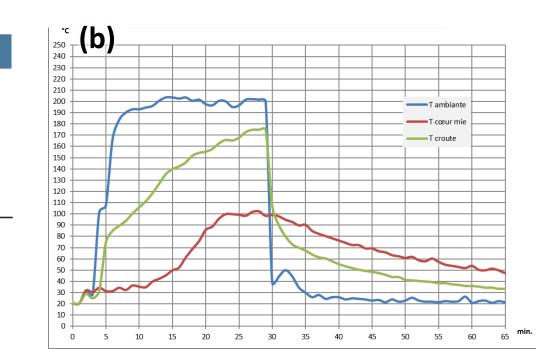


Figure 3 : Results concerninng the thermoresistance of strain A (a) and temperature registrations for 350g molded bread baking (b).

To go further ...

- Strain effectiveness improvement (formulation, production, etc.)
- In silico study on strains B and C
- Looking for partners to continue exploring the potential of these strains

Consortium complementarity : from field to fork

Expertise in plant protection and biocontrol product evaluation

- Regulated growth chamber and greenhouses for In planta trials

72,9k€

Molecular biology lab for microorganism detection on plant

Expertise on spore forming bacteria diversity, risk assessment and biocontrol of **Fusarium** Head Blight of cereals

- Spore forming bacteria collection, mainly isolated from food
- Spore production & culture
- Characterisation of bacterial growth, enzymatic, bioadhesion and resistance ability
- Bacterial molecular identification & typing
- Food inoculation and validation of process and shelf life using predictive microbiology to assess destruction, survival or resistance of strain along food processes and shelf-life
- Screening of antifungal activity on wheat grain-based medium and wheat grains
- Mycotoxin quantitation on various matrices

Soutien financier du Tremplin Carnot - AgriFood Transition dans le cadre des Actions de Ressourcement scientifique, conformément aux usages internationaux