SolubPhos - Inoculant as a support for phosphorus fertilization

Christiane A. O. Paiva

Researcher of Soil Microbiology, EMBRAPA MAYZE AND SORGHUM, Brazil

ABIM[®] Annual Biocontrol Industry Meeting[®]

MINISTÉRIO DA Agricultura e Pecuária

UNIÃO E RECONSTRUÇÃO

Embrapa - Brazilian Agricultural Research Government Corporation

Every US\$ 1 invested in Embrapa by the Federal government generates an average return of US\$ 13.20 for the Brazilian society

• 9,234 employees

Embrapa **Maize and Sorghum**

Sete Lagoas - MG - Brazil

Brazil is a powerhouse agricultural producer – 3 seasons of cropping/year

- Brazil has a largest area of agriculture and net exported in the world
- Is the top-5 producers of 34 commodities:
- soybean, maize, sugarcane, coffee, cotton, meat, etc

Phosphorus 30.974

15

PHOSPHORUS is important to plant energy, root growth, and food productivity

Global P Limitation and LEGACY P

Brazilian soils: Low available P, oxides of Fe and Al, clays and **High retention potential**

- Increase the demand for synthetic P fertilizer
- **Higher production cost** to Brazilian farmers

Only 20% phosphate is reused by plants

Brazil's dependence on PHOSPHATE imports - World Increasing demand for fertilizers

Source Bloomberg

Biological solution: Efficient phosphorus cycling In the nature for the production system

Fonte: https://mvcoterra.com/wp-content/uploads/La-vida-secreta-de-las-plantas.ipg

P solubilizing and mineralizing microorganisms and Mycorrhiza

Bacillus megaterium CNPMS B119

The first Technological BIO Solution was launched in 2019, Brazil

Soil Biology and Biochemistry Volume 41, Issue 9, September 2009, Pages 1782-1787

B	13	5		
A Det			5	
10.00	- 22	-		
	14	2	<u>e-</u>	

Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome

C.A. Oliveira *, V.M.C. Alves ^b, I.E. Marriel ^b, E.A. Gomes ^b, M.R. Scotti *, N.P. Carneiro ^b, C.J. Guimaräes ^b, R.E. Schaffert ^b, N.M.H. Sá * A 😝

- Different mechanisms of P solubilization and plant promoting growth
- rhizospheric and endophitic strains

٠

Published: 29 May 2020

Tropical Bacillus Strains Inoculation Enhances Maize Root Surface Area, Dry Weight, Nutrient Uptake and Grain Yield

Svivia Morais de Sousa C. Christiane Abreu de Oliveira. Daniele Luiz Andrade. Chainheny Gomes de Carvalho, Vitória Palhares Ribeiro, Maria Marta Pastina, Ivanildo Evódio Marriel Ubiraci Gomes de Paula Lana & Eliane Aparecida Gomes 🖂

Journal of Plant Growth Regulation (2020) Cite this article 30 Accesses Metrics

P moves slowly in the soil (max. 2-3 cm/year)

Bacillus megaterium CNPMS B119

PHOSPHATASE

Phosphorus Organic

H₂PO₄⁻ ou HPO₄²⁻

From bacteria to bioinoculant - steps

Maize Inoculation of selected Bacillus on the greenhouse conditions

inter-//Access/10.1007/s00003-007-00704-ORIGINAL PAPER

Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize

Vitória Palhares Ribeiro 10 - Eliane Aparecida Gomes³ - Sylvia Morais de Sousa¹¹³ Ubiraci Gomes de Paula Lana¹¹. Antonio Marcos Coelho². Ivanildo Evódio Mantel¹¹¹. Christiane Abreu de Oliveira-Patva^{L1}

READLIAN FOURNAL OF MICROBIOLOGY 475 (7019) 40-46

Environmental Microbiology

Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P

Vitória Palhares Ribeiro", Ivanildo Evódio Marriel^b, Sylvia Morais de Sousa^b, Ubiraci Gomes de Paula Lana^b, Bianca Braz Mattos^e, Christiane Abreu de Oliveira^{b,*}, Eliane Aparecida Gomes^{b, **}

³ Universidade Federal de São João del Rei, Sete Lagoas, MG, Brazil ^b Embrapa Milho e Sorgo, Sete Lagoas, MG, Brazil

^e Embrupa Solos, Rio de Janeiro, IU, Brazil

9

Bacillus Inoculation in maize under field conditions

+11 % grain

production

+20% P

Table 5 Adjusted means for yield and grain phosphorus content of maize inoculated with strains B2084, B119, B116 and B70 after 120 days of cultivation under field conditions with no P added (P0) and triple superphosphate (TSP)

Treatment	Yield (kg ha-	¹)*	P grain (g kg ⁻¹)*	
	P0	TSP	PO	TSP
B2084	9082.85 ^{Ab}	8688.74 ^{Ab}	20.25 ^{Ac}	25.10 ^{Bb}
B119	8659.41 ^{Abcd}	10084.73 ^{Ba}	24.35 ^{Ab}	29.02 ^{Ba}
B116	11003.90 ^{Aa}	9430.11 ^{Ba}	31.79 ^{Aa}	25.66 ^{Bb}
B70	8370.80 ^{Acd}	8290.12 ^{Ab}	23.15 ^{Ab}	24.45 ^{Ab}
Non-inoculated	8089.37 ^{Ad}	8013.92 ^{Ab}	20.17 ^{Ac}	23.47 ^{Bb}

*Adjusted means followed by the same lower case letters indicate not significant differences between strains, and identical capital letters indicate not significant differences between P sources by Tukey's test (p < 0.05)

۲

Tropical Bacillus Strains Inoculation Enhances Maize Root Surface Area. Dry Weight, Nutrient Uptake and Grain Yield

hybria Monais de Secca^{1,10} Ortofrane Abrez de Oliveira¹⁴ Castelle Lais Archade¹ Chatebarry Gomes its Canadha¹. Millin's Pathenes Attems² - Maria Marts Pacitica^{1,1} - Isaminis Existin Merrel^{1,1} Obtract Connec de Paula Cona⁷¹¹⁰ Elline Agramente Conner¹2

Camila Dristina Viena Veliceo", Christiana Abres de Oliveira²⁰, Elana-Aparenila Domes³, Ubioci Gomes de Bacia Lana¹³, Chaisberry Denes de Cantellin', Learn keep Weersite Calmaries". Maria Marta Partina¹² and Selbia Moran de Sexaulador

Recomendação agronômica NO. O AN TRO de cepas de Bacillus subtilis 260 (CNPMS B2084) e Bacillus megaterium (CNPMS B119) na cultura do milho

Bacillus megaterium CNPMS B119

First seasons: 5 strains

Last seasons: 2 strains

CNPMS B2084

CNPMSB119

Bacillus subtilis CNPMS B2084

Partnership between Embrapa and Simbiose

Validation of Bacillus inoculants in maize field

Oliveira et al. (2020)

Sugarcane inoculated with SOLUBPHOS – 2020/2021 season

Super Tech https://doi.org/10.1007/s12355-023-01126-4

RESEARCH ARTICLE

Evaluation of Sugarcane Yield Response to a Phosphate-Solubilizing Microbial Inoculant: Using an Aerial Imagery-Based Model

Denize Palmito dos Santos¹ - Artur Soares² - Guilherme de Medeiros² - Daniel Christofoletti² -Caio Simplicio Arantes⁴ Julio Cezar Souza Vasconcelos¹ - Eduardo Antonio Speranza⁵ Luiz Antonio Falaguasta Barbosa¹ - João Francisco Gonçalves Antunes⁵ - Geraldo Magela de Almeida Cancado¹0

P inicial resina = 18.8 mg dm^{-3} (Bom)

Fonte: Geraldo Cancado

Inoculant to increase phosphorus absorption with microrganisms that solubilize phosphates – Expanding a lot area in Brazil

- B119 (B. megaterium)
- B2084 (B. subtilis)

Registered in others countries: now in Germany, Argentine, Uruguai, EUA, Canada, Paraguai, etc

NEW TRIALS: Sorghum, brachiaria, tomato, carrot, rice, beans, coffee, wheat, banana, potato, cotton, etc.

Farmers report gains in roots, productivity across the country

• Good to soil health, low C emissions, low cost, low water polution, and reduce the use of synthetic fertilizers

Mais Soja BiomaPhos rendeu R\$ 105 milhões ao Pais em 2020 com aumento de produtividade de soja MAIS SOJA - Pensou Soja, Pensou Mais Soja

s imagens podem ter direitos autorais. Saiba mais

- Difference in root initiation in soybean plants inoculated with SolubPhos compared to the untreated control. São Luiz do Oeste, PR.
- potential for partial or total replacement of synthetic fertilizers

R\$ 1.3 billion in social profit to the country in 2021: https://www.embrapa.br/busca-de-noticias/-/noticia/61084904/biomaphos-rendeu-r-

105-milhoes-ao-pais-em-2020-com-aumento-de-produtividade-de-soja-e-milho

Bioinputs: Biological solutions to increase phosphorus and nutrient use efficiency – FAO and ONU goals

Demands

TO ADOPT MANAGEMENT PRATICES THAT INCREASE ORGANIC SOURCES OF NUTRIENTS, NUTRIENT CYCLING, BIOLOGICAL INPUTS AND LOW CARBON AGRICULTURE

Papers and Other Results with PSM, SolubPHOS

Retations partial [and/raps by administized/raps by

Follow Distances of Figures, Figures, MG, Brazel, advance(gradous com Ar

Denize Palmito dos Santos¹ - Artur Soares² - Guilherme de Medeiros² - Daniel Christofoletti² Caio Simplicio Arantes" Julio Cezar Souza Vasconcelos¹ - Eduardo Antonio Speranza⁵ Luiz Antonio Falaguasta Barbosa¹ - João Francisco Gonçalves Antunes¹ - Geraldo Magela de Almeida Cançado¹0

00

Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE)

Christiane A. Oliveira ".", Nadia M.H. Sa ", Eliane A. Gomes", Ivanildo E. Marriel", Maria R. Scotti ^a, Claudia T. Guimariles^b, Robert E. Schaffert^b, Vera M.C. Alves^b *Jokeral Deservity of Minas Greak, Botary Department, PO box 486, 31270-302 Bels Horzonte, MC, Brazil *Evelyings Matter and Sorghure, PO box 151, 25705-570 Selo Lagras, MIL Syazif

Archives of Microbiology (2022) 204:143 https://doi.org/10.1007/s00203-022-02759-3

ORIGINAL PAPER

Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize

۲

Check for

Vitória Palhares Ribeiro¹ + Eliane Aparecida Gomes² · Sylvia Morais de Sousa^{1,2,3} Ubiraci Gomes de Paula Lana^{2,3} Antonio Marcos Coelho² Ivaniido Evódio Marriel^{1,2,3} Christiane Abreu de Oliveira-Paiva^{2,3}

Journal of Plant Growth Regulation https://doi.org/10.1007/s00344-020-10146-9

BJM

Tropical Bacillus Strains Inoculation Enhances Maize Root Surface Area, Dry Weight, Nutrient Uptake and Grain Yield

Sylvia Morais de Sousa^{1,2,3} · Christiane Abreu de Oliveira^{1,2} · Daniele Luiz Andrade² · Chainheny Gomes de Carvalho² · Vitória Palhares Ribeiro³ · Maria Marta Pastina^{1,3} · Ivanildo Evódio Marriel^{1,2,3} Ubiraci Gomes de Paula Lana^{1,2} · Eliane Aparecida Gomes¹

Thank you! Obrigada!

Christiane A. O. Paiva christiane.paiva@embrapa.br +55-31-30271193

MINISTÉRIO DA Agricultura e Pecuária

A public-private partnership between Embrapa and the company Simbiose is the first to offer an inoculant fully developed from Brazilian technology for the market - SolubPhos

Solub PHOS

Characteristics

Technology developed in partnership with EMBRAPA Isolates - *B. subtilis BRM* 2084 + *B. megaterium* BRM 119 Formulation - Suspension Concentrate (SC) Concentration - 4x10⁹ CFU/mL

Shelf life - 12 months in 25~30°C (77~86°F)

Application – In Furow or Seed Treatment

Pack Size (actual) – 0,5L, 1,0L, 2,0L.

2 x 2,5 Gallons = 1 case*

*or another according to necessity

