

Sustainable Agriculture: Increasing Opportunities for IT Tools and Platforms.

Dr. Mounir Hassani

www.eprotecta.com

Fundamental question

Can agriculture be sustainable and at the same time

be sufficiently productive to feed the World?

Subsidiary questions:

- What are the limits, known and unknown?
- How to achieve an actually sustainable agriculture?

To the first question the answer is a clear YES!

Which is explained by addressing the two other questions.

World cereal production

World Cereal Production

3 October 26th, 2011

The 9th New AG International, Athens, Greece

Protecta

Population and meat production in the World and in China

Meat Production

October 26th, 2011

Known and unknown limits

Demography

According to the UN, the World population is likely to reach 9.1 billion in 2050 while it is now 6.9 billion, a 32% increase.

Over the next 40 years the population growth rate will be 0.7% each year.

Daily calories will also increase by 5-10% (expressed in Kcal/day).

Food will contain more animal proteins, the production of which requires grain and forage. Example: China's meat production was multiplied by 3 over the past 20 years.

Cultivated area

According to the FAO, the World agricultural land area went from 45.3 million km² in 1968 to 48.8 in 2008, a small change over 40 years.

No large further change is expected in the future and if so, it would rather be a decrease.

Cultivated area for food is also put in competition with biofuels

Crop yields

5

Over the past 40 years the worldwide average wheat yield grew from 1417 Kg/Ha to 3025 Kg/Ha,

a 1.9% annual growth rate.

In the UK this yield went from 4038 Kg/Ha to 7296 Kg/Ha over that same time period, a reduced growth of 1.5% per year, albeit starting from a significantly higher level.

(Source FAOStat)

Challenges

- To increase production by approx. 70% in 2050, agriculture will need to be more intensive:
 - Higher yields
 - Better crop rotation
 - No-till farming
 - Use of all available land, no fallow.
- At the same time, constraints are clearly imposed:
 - Access to water
 - 1.5 m³ water is required to produce 1Kg wheat
 - 15 m³ water are needed to produce 1 Kg meat (FAO 1997)
 - Need to live with the consequences of climatic changes, water resources getting more volatile.
 - Environmental protection: fertilizers, crop protection products
 - Safety: farm worker protection, chemical residues, microbiological quality.
 - Sustainable development:

"meeting the needs of the present without compromising the ability of future generations to meet their own needs".

6

Wrong "good solutions" to these challenges

- Organic agriculture: low efficiency, high land use, a luxury niche.
- Increase cultivated area: would be done at the expense of forest area.
- Cultivation on inadequate, poor soils: would need even more fertilizers, water, and crop protection treatments.
- Restore and support traditional structures [having low productivity] in developing countries: an unworthy proposal for these populations!

Productive and sustainable agriculture: how to achieve it?

• Plant variety improvement

- High yield
- Drought and salt tolerance
- GMO or not

Increase irrigation

- Implies infrastructural investments (loss reduction, surface extension)
- Implies an optimal water management in each water basin
- Irrigation systems improvement
 - Implies investments by the grower
- Crop management method improvement
 - Soil preparation
 - Targeted fertilizer application
 - Integrated pest management (chemical or biological)
 - Use of novel methods to improve plant uptake of water and nutrients, as for example mycorrhizae.
- Improvement of the information provided to the growers and farm managers
 - Meteorological data and forecasts
 - Risk evaluation: drought or flood, diseases and infestations
 - Anticipation of needs: irrigation, crop protection treatment
 - Decision aid for an optimal crop management

Making progress with Research & Development

- New product discovery and development seeds, crop protection products, machinery are mostly in the hands of R&D oriented private companies.
- Other agronomical methods soil management, crop cycle management are studied and developed in agricultural research centres (public sector) and by the growers themselves, either alone or in groups.
- Information systems adapted to the grower's needs are still underdeveloped.

9

Information system: requirements

- Information to be provided to the grower and to the professional community around him:
 - Meteorological data and forecasts
 - Risk evaluation: drought or flood, diseases and infestations
 - Anticipation of needs: irrigation, crop protection treatment
 - Decision aid for an optimal crop management
- In real time, before the risks materialise themselves
- Simple and understandable form
- Easily accessible
 - Internet
 - Mobile phone (SMS, smart applications)

Information platform specification

• Data collection and visualisation of local climatic conditions

- Taking into account local aspects: terrain and microclimates
- Using real time data collected by local measurement stations:
 temperature, air pressure, wind speed and direction, rainfalls, air and sol moisture, solar irradiation, etc.
- Possible integration of locally made observations, e.g. insect counts, disease symptoms.

• Specific, local weather forecasts over 7 to 14 days

- Rainfalls
- Soil moisture
- Risk model calculation
 - Drought, flood
 - Pathogen or insect infestation
 - Further physical risks: frost, forest fire
- Decision aid
 - In due time to enable action in a time frame of few days
 - Irrigation planning
 - Alert thresholds justifying a well targeted application of crop protection products
 - Optimal hourly window for an effective and efficient product spraying

Platform users

- Growers and groups of growers
- Producing companies and coopératives
- Farm consultants
- Water management institutions
- Research stations and extension services
- Insurers

Public or private institutions may also consolidate a network of such users.

Expected benefits provided by an information platform

- Thanks to its easy access (internet, alert messages) and to a simple and understandable representation, the user can optimize the use of his resources during the cultivation cycle, and increase field productivity:
 - Water management with loss prevention and avoidance of watering deficit. Soil moisture can be maintained at an optimal level corresponding to the plant needs for evapotranspiration.
 - Economic savings and improved effectiveness in a rational use of crop protection products. By monitoring of risk threshold values, only the needed treatments will be made and less product will be used.
 - Enhanced effectiveness of treatments with crop protection products by choosing the time of the day with best spraying conditions.
- For resource managers:
 - Water: hydraulic balance and need evaluation over a whole basin. Distribution management by anticipation.
 - Forests:
 - Fire risk evaluation, prevention and alert management
 - Pest monitoring (e.g. pine processionnary moth in Mediterranean forests)

Economic benefits

- As a rule of thumb it is generally accepted that 5-10% of the crop value can be gained or saved through a better resource management.
- The contribution of an information system, as **eProtecta**, is of the order of 10 to 25% of these savings.
- In other terms: a qualified grower practicing integrated crop management (ICM) will get from 0.5 to 2.5% additional revenues thanks to the use of the **eProtecta** platform.
- The representative size for the calculation of economic value is an agricultural zone in which one or a few stations are installed, 10 to 100 km² (1000 to 10'000 Ha) depending on terrain and local climate heterogeneity. A larger region will be covered by a network of well situated stations.
- Value to the grower

Approximation for 1 year or one production cycle:

Grower's revenues	10'000 EUR/Ha ,	000 EUR/Ha , e.g. potato	
Expected total improvement	5% soit	500 EUR/Ha	
Area covered by eProtecta	10 km ²	1'000 Ha	
of which cultivated	50%	500 Ha	
Total economic return		250'000 EUR	
attribuable to eProtecta	10%	25'000 EUR	

Functionning principle

ABIM 2011, Lucerne

Fonctional scheme

Processes

Measurement	Forecasting	Risk Evaluation	Communication	Decision
Terrain data • geography • crops Local Stations : • Ambient temperature • Atmospheric pressure • Relative air humidity • Wind speed and direction • Rainfalls • Solar irradiation • Soil humidity at various depths Local Observations • Pest pressure	Weather Plant Transpiration Hydraulic Resources Drought	Watering needs Forest fire Pests and diseases Drought Hydraulic reserves Flood	Internet Site • Historical and forecasting graphs • Pictograms • Maps (GIS) Targeted SMS and e-mails Database management	Irrigation Crop protection treatments Local Alarms: • Fire prevention • Flood prevention Water management • Reserves • Watershed balance

eProtecta: development tasks at hand

• Establish partnerships

- Group of grower, cooperative or similar, aiming at exploiting to the best potential the data from existing or planned local stations.
- Technologies
 - Data transmission from the local stations to a central server
 - Custom made weather forecasts
 - Predictive models: irrigation, pest and diseases, etc.
- Technical platform development
 - Rough demonstration site already in place (www.eprotecta.com)
 - Information technology assembly to obtain a functional pilot platform
- Promotion and distribution
 - To individual growers and groups: cooperatives, industrial groups, etc.
 - Professional associations (input manufacturers, producers)
 - Research and extension institutions

Economic model

- The service used by the grower is composed of modules adapted to his needs for a crop cycle or on a yearly basis.
- The **eProtecta** service will be:
 - Either directly offered to an individual grower, assuming that he owns or has access to local stations
 - Or grouped by a distributor who owns or has access to a series of local stations.
- All needs of registered users (individually or from a group) will be managed by the **eProtecta** platform.
- Independent partners will sell and maintain local stations and provide real time data transmission to the central server.
 In some markets eProtecta may also supply local stations.
- The distributor (cooperative, association, public institution) may also host a replica of the **eProtecta** platform under its own corporate identity.

Innovation

- **eProtecta** is a platform that integrates forecasts and historical values, and that enables anticipation of future difficult situations:
 - Physical risks: drought and forest fire, flood, frost
 - Biological risks: diseases or pest infestations.
 - Water resource management
- Customization:

Weather forecasts and model prediction are specifically calculated for a specific site, taking into account data from locally installed stations. No other meteorological service offers such customization.

eProtecta's value is its contribution to sustainable agriculture, enabling a sound environment protection coupled with clear and solid economic advantages.

www.eprotecta.com

