Efficacy of Prestop® against soil borne and foliar pathogens on European crops
Core business: Production of micro-organisms

- Biers
- Bakker's yeast and products
- Animal Care (health/nutrition)
- Human Care (health/nutrition)
- Distilled alcools and ethanol
- Plant Care (health/nutrition)
- Bio-ingredients
- Wine

- Wine
Biological plant protection products and biofertilizer for agriculture, horticulture and forestry
Biological plant protection products for horticulture

Prestop

based on *Gliocladium catenulatum*
strain 1446
Current Registrations of Prestop

US and European approval (EPA and Annex 1)
Ecological characteristics of strain J1446

- Isolated from Finnish field soil within a Nordic project on biocontrol of seed-borne pathogens of cereals 1989-93

- Biological activities: between 6 and 30°C

- Able to survive below 6°C and above 30°C

- Not harmful to beneficial insects, nematodes or pollinators

Gliocladium catenulatum

J1446
Ecological characteristics of strain J1446

Gliocladium catenulatum J1446 is able to colonize leaf and root surface

G. catenulatum growing on water agar, isolated from cucumber roots.

G. catenulatum growing on potato dextrose agar, isolated from pelargonium leaves.
Various modes of action are involved:

- Hyperparasitism seems to play an important role:
 - Detection of enzyme activities
 - Observation of mycelium interaction

- Competition for nutrients and space
 - Colonization of root and foliar surfaces

- Antibiosis not shown

Weak probability of development of pathogen resistance
The compatibility between *Gliocladium catenulatum* and chemical pesticides

In vitro

- **Teldor**
 (fenhexamid)
- **Switch 62.5 WG**
 (cyprodinil and fludioxonil)
The compatibility between *Gliocladium catenulatum* and chemical pesticides

In vivo

Full compatibility with Topsin M (tiophanate-methyl) on *cucumber* when sprayed at the same day
<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Examples of commercial name</th>
<th>Interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azoxystrobin</td>
<td>Amistar</td>
<td>2</td>
</tr>
<tr>
<td>Benomyl</td>
<td>Benlate</td>
<td>4</td>
</tr>
<tr>
<td>Boscalid et kréoxim-méthyl</td>
<td>Collis</td>
<td>0</td>
</tr>
<tr>
<td>Bitertanol</td>
<td>Baycor</td>
<td>2</td>
</tr>
<tr>
<td>Carboxin</td>
<td>Cadan, Oxalin, Vitavax</td>
<td>4</td>
</tr>
<tr>
<td>Fenhexamide</td>
<td>Teldor</td>
<td>0</td>
</tr>
<tr>
<td>Fludioxonil-cyprodinil</td>
<td>Switch</td>
<td>4</td>
</tr>
<tr>
<td>Guazatine</td>
<td>Panoctine</td>
<td>2</td>
</tr>
<tr>
<td>Hymexazol</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Imazalil</td>
<td>Fungaflor</td>
<td>2</td>
</tr>
<tr>
<td>Iprodione</td>
<td>Chipco Green 75WG / Rovral</td>
<td>4</td>
</tr>
<tr>
<td>Krézoxym-méthyl</td>
<td>Stroby, Candit</td>
<td>0</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Dithane, Mancozeb</td>
<td>4</td>
</tr>
<tr>
<td>Mépanipyrim</td>
<td>Frupica</td>
<td>0</td>
</tr>
<tr>
<td>Métalaxyli-M</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Myclobutanil</td>
<td>Systhane 24 EC</td>
<td>0</td>
</tr>
<tr>
<td>Penconazole</td>
<td>Topenco, Topas 100 EC</td>
<td>1</td>
</tr>
<tr>
<td>Phosétyl-aluminium</td>
<td>Aliette</td>
<td>0</td>
</tr>
<tr>
<td>Prochloraz</td>
<td>Sportak 45 HF</td>
<td>7</td>
</tr>
<tr>
<td>Procymidone</td>
<td>Fortress 500</td>
<td>0</td>
</tr>
<tr>
<td>Propamocarp Hydrochloride</td>
<td>Previcur® Energy, Previcur N®</td>
<td>0</td>
</tr>
<tr>
<td>Propiconazole + prochloraz</td>
<td>Basso</td>
<td>7</td>
</tr>
<tr>
<td>Pyraclostrobin+boscalid</td>
<td>Signum</td>
<td>2</td>
</tr>
<tr>
<td>Pyriméthanil</td>
<td>Scala</td>
<td>1</td>
</tr>
<tr>
<td>Sulfur</td>
<td></td>
<td>0*</td>
</tr>
<tr>
<td>Thiophanate méthyl</td>
<td>Topsin M</td>
<td>2</td>
</tr>
<tr>
<td>Toclofosmethyl</td>
<td>Rizolex</td>
<td>2</td>
</tr>
<tr>
<td>Thiram</td>
<td>Thirame, TMTC, TMTD</td>
<td>4</td>
</tr>
<tr>
<td>Triadiméfon</td>
<td>Amiral, Baylaton</td>
<td>0</td>
</tr>
<tr>
<td>Triadiménol</td>
<td>Baytan</td>
<td>2</td>
</tr>
<tr>
<td>Triforine</td>
<td>Funginex</td>
<td>2</td>
</tr>
<tr>
<td>Trifloxystrobin +propiconazole</td>
<td>Stratego</td>
<td>4</td>
</tr>
<tr>
<td>Triflumizole</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Vinclozolin</td>
<td>Ronilan</td>
<td>4</td>
</tr>
</tbody>
</table>
Compatibility between *Gliocladium catenulatum* and insecticides

<table>
<thead>
<tr>
<th>Active ingredients</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis</td>
<td>0</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>0</td>
</tr>
<tr>
<td>Buprofezin</td>
<td>0</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>2</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>0</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0</td>
</tr>
<tr>
<td>Fenbutatin oxide</td>
<td>2</td>
</tr>
<tr>
<td>Malathion</td>
<td>0</td>
</tr>
<tr>
<td>Metharizium anisopliae</td>
<td>0</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>0</td>
</tr>
<tr>
<td>Permethrin</td>
<td>2</td>
</tr>
<tr>
<td>Pirimicarb</td>
<td>0</td>
</tr>
<tr>
<td>Pyrethrins</td>
<td>0</td>
</tr>
</tbody>
</table>
USES in CONVENTIONAL, IPM and ORGANIC CROPS

1. Treatments of substrates against *Pythium*, *Phytophthora*, *Rhizoctonia*, *Fusarium*

2. Treatments of vegetable, ornamental and aromatic plants, against *Pythium*, *Phytophthora*, *Rhizoctonia* et *Fusarium*

3. Treatments against black rot of cucumbers (*Didymella*)

4. Treatments against grey mould caused by *Botrytis* on tomatoes, green pepper, cucumbers, strawberries, and ornamental plants
Biological activity of *Gliocladium catenulatum* strain J1446 with Prestop® formulation

Foliar diseases
Prestop® on tomatoes against *Botrytis cinerea*

- In the Netherlands and Belgium, annual crop losses in spring and autumn (up to 25%)
- Airborne spores always available
- Growth conditions:
 - high moisture (> 87%)
 - weak plant tissues (pruning wounds)
Trial in 2008: Prestop® on tomatoes against *Botrytis* (spraying on stems)

Protocol:
- Tomato crop – 25 weeks old
- The rate of Prestop® was 100 g suspension per 1000 plants (20ml per stem) per application
- Three times replicated (wk 42, 44, 46)
- Pruning wounds preventively treated by spraying the stems and then inoculated with *Botrytis* spore suspension
- Treated wound covered during 48 hours
- Lesion development on wound
Trial in 2008: Prestop® on tomatoes against Botrytis (spraying on stems)

Results

Preventive application of Prestop = Total protection like chemical treatment

UR, Wageningen, Nederland, Autumn 2008
Trial in 2011: Prestop® on tomatoes against *Botrytis* (spraying on wounds)

Results
Prestop in the control of gummy stem blight of cucumber (*Didymella/Mycosphaerella*)

Spray of the stems 6 and 53 days after planting

![Bar chart showing infected plants percentage](chart)

- **Untreated**: 23,4%
- **Prestop 100g/1000 plants**: 9,6%

Images of infected cucumber stems also shown.
Trials in 2011 and 2012: Low volume spraying of Prestop® in foliar treatment of tomatoes

- LV-spraying (fine fog) was used in a commercial tomato cultivation in Holland
- The pressure was 6 bars and the solution was pumped through a filter-nozzle combination
- An excellent colonization of Gliocladium in the foliage was observed after LV-spraying:
 - *Gliocladium* index (0-3) in larger leaves: average 2.8
 - *Gliocladium* index (0-3) in smaller leaves: average 2.8
- No observation of *Botrytis* (*in vitro* and in the greenhouse)

Tomato producers, Nederland, 2011 and 2012
Novel applications on grapevine

- Trials in 2010 and 2011 in Austria by Kwisda
 - 2010: test at 5 kg
 - 2011: test at 1 kg and 2 kg with or without copper

1. Untreated Check
2. Switch WG 1 kg/ha BCD
cyprodil 375 g/kg + fluoxidin 250 g/kg
3. Frupica Opti WG 0.8 kg/ha BCD
mepanpyrin 500 g/kg
4. PRESTOP 1 kg/ha BCD
5. PRESTOP 2 kg/ha BCD
6. PRESTOP + Cu++ 1 kg/ha BCD
7. PRESTOP 1 kg/ha ABCD

A ... mid flowering BBCH 65-67
B ... Berries beginning to touch, BBCH 77 (36 and 22 DA-A)
C ... Begin of ripening, BBCH 79- 81 (15 and 33 DA-B)
D ... Softening of berries, BBCH 85 (31 and 8 DA-C)
Water volume: 500 and 1000 L/ha.
Control of grapevine grey mould: 1st site

Trial Location: Styria/AT
Variety: Zweigelt

Kwisda experiment
Control of grapevine grey mould: 2nd site

Kwisda experiment:
Similar results with Zweigelt variety in Lower Austria
Biological activity of *Gliocladium catenulatum* strain J1446 with Prestop® formulation

Root diseases

Pythium, Phytophthora, Rhizoctonia, Fusarium
Prestop® in the control of root diseases on sweet pepper, applied via drip irrigation

Trial 15/01

Phytophthora

Phytophthora + Prestop WP
Prestop in the control of damping off (\textit{Pythium} and \textit{Rhizoctonia}), 6 weeks after sowing

Control Prestop by drenching 10g/m2
Prestop® spraying on *Pelargonium* infected by *Phytophthora*
Methods of applications

• Application methods for root and foliar diseases:

 – Spraying of the growing medium

 – Incorporation in the liquid solution for hydroponic cultures and drip irrigation

 – Spraying with standard equipment at normal and low volume (LV-spraying system)

 – Spray the pruning wounds with a small hand-sprayer against Botrytis on tomatoes
Conclusions:
Gliocladium catenulatum strain J1446 as a biocontrol agent

- Strain J1446 controls several root diseases as well as foliar pathogens on vegetable, fruit, ornamental and aromatic plants
- Strain J1446 is compatible with many other plant care products
- Prestop is registered in American and European countries
- Prestop is widely used in greenhouse and more and more in field
- Formulation is adapted to standard and alternative systems of application
Thank you for your attention