Annual Biocontrol Industry Meeting, 21.-23.10.13, Basel

Accelerated storage tests for fast product registration?

Prof. Dr. Anant Patel

University of Applied Sciences Wilhelm-Bertelsmann-Str. 10, D-33602 Bielefeld email: anant.patel@fh-bielefeld.de

Fermentation and formulation technology

Main research focus: systematic development of materials, methods and production processes to prepare novel formulations (IP available)

 CO_2

- ATTRACT -"Attract & kill" capsules •
- Formulation of plant extracts ۲
- Fermentation and formulation of endophytes •
- Biotechnology of endophytes •
- INBIOSOIL Innovative biological products for soil pest control •
- Co-immobilization of chemo- and biocatalysts •
- Novel bioinks for bioprinting •
- Immobilization of hydrogen-producing *C. reinhardtii* and • light harvesting complex in novel silica gels
- Towards bioactive nano-hybrid membrane systems • for efficient and stable photon energy transfer
- Immobilization of Co-nanoparticles in conductive gels •

FH Bielefeld University of

Applied Sciences

CO₂ releasing beads

+ soil insecticide

Registration of biological control agents

- Microorganisms used for control of pests are subject to registration as a "plant protection product"
- Registration is certainly the largest barrier for commercialization of biopesticides

Reasons for these problems are [1]:

- Requirements are often adapted from requirements for chemicals which are not appropriate for microorganisms
- End-points of risk assessments are not clearly established which allow differences in interpretation and often leads to more data being required
- Procedures are lengthy, non-transparent and costly

Evidence of stability and shelf life is required, ideally after drying

[1] Ravensberg W.J. A Roadmap to the successful development and commercialization of microbial pest control products for control of arthropods, 2010, Springer Verlag

Drying of encapsulated *Pseudomonas fluorescens* relevant parameters

- culture age
- osmotic stress
- drying time
- bead material
- drying protectants \rightarrow
- yeast
- gelatin
- rehydration
- atmospheric conditions during drying

• ...

.....on survival of cells.

FH Bielefeld

University of Applied Sciences Very quick estimate of shelf life: "thermostability test"

after 4 weeks of storage at 20°C

accelerated storage test (2 h at 60°C)

For a fast estimation of shelf life, incubate formulation 2 h at 60°C?

FH Bielefeld

University of Applied Sciences

Accelerated storage test Basic idea

FH Bielefeld University of Applied Sciences

- Quick and objective determination of storage stability
- Samples are stored at three or more different temperatures for hours or few days
- Arrhenius relationship obtained permits predicting the rate of death at **any** storage temperature and time

loss of cells N during storage follows:

 $\log N = \log N_0 - k^* t$

where k = f(1/T) specific rate of degradation according to Arrhenius equation:

log k = -(ΔH_a/2.303*R)*1/*T*

 ΔH_a : ", heat of inactivation" [J/mole] R: universal gas constant

• Other models: WLF, Eyring-Polanyi, WeLL; exponential model (Peleg, 2012)

Accelerated storage test State of the art

FH Bielefeld University of Applied Sciences

microorganism	reference	Comparison estimated/experimental	Survival/Proliferation
Plant viruses	Yordanova, A. et al. (2000)	+	
Archaebacteria	Sakane, T. et al. (1992) [2]	+	-
Lactobacillus brevis	Desmons, S. et al. (1998)	+	
	Tsen J-H. et al. (2007)	+	
acidophilus	Mitic, S. et al. (1974)	+	Survival
	King, V. A. et al. (1998)	+	
bifidus	Damjanivic V. et al. (1986)	-	
Lactococcus spp.	Achour, M. et al. (2001)	-	
Pseudomonas spp.	Kim, W. et al. (2012)	-	
	Bruckner S. et al. (2013)	+	Draliforation
	Cardenas F. C. et al. (2008)	-	Promeration

- At times accelerated storage tests without real storage tests in comparison
- Actual prognosis for microorganisms in dairy products or contaminations in meat
- For meat Gombertz model, modified Arrhenius kinetic

Accelerated storage test Examples

FH Bielefeld University of Applied Sciences

Example I – Desmons 1998 [4] Storage of *Lactobacillus brevis* Comparison of survival

Time of storage (4°C)	Survival estimated by accelerated storage test [%]	Survival experimentally measured [%]
50 days	58	59
137 days	23	16

Example II – Tsen 2007 [5] Storage of immobilized *Lactobacillus acidophilus* Comparison of degradation rate k (h^{-1}) values

Temperature (°C)		Free cell	Immobilized cell		
			Ca-alginate	κ-Carrageenan	
Predicted value	4	0.0085	0.0019	0.0030	
	25	0.527	0.0176	0.0252	
Experimental value	4	0.0082	0.0018	0.0029	
	25	0.0531	0.0179	0.0254	

Accelerated storage test with encapsulated *P. fluorescens*

FH Bielefeld University of Applied Sciences

N as a function of time for different temperatures

Schönwandt et al. (in prep.) [13]

Accelerated storage test with encapsulated *P. fluorescens*

Plot of logN as function of time for different temperatures

slope of the curves = k values acc. to log N = log N₀ - k*t

FH Bielefeld

University of Applied Sciences

Accelerated storage test

with encapsulated P. fluorescens

FH Bielefeld University of Applied Sciences

Plot of log k as function of T acc. to Arrhenius

Allows estimation of k values below 20°C

```
Place k function into log N = log N<sub>0</sub> - k^*t
k_i : specific rate of degradation, t: time
```

Accelerated storage test with encapsulated *P. fluorescens*

FH Bielefeld University of Applied Sciences

Model for prognostication of cells alive after storage of formulation MF+PA5 at defined temperatures T

 $\log N = \log N_0 - 10^{-7,1782} (1/T \times 1000) + 21,461 \text{ xt}$

 k_i : specific rate of degradation, T: Temperature

Model verification: Prognosticated an	d real cfu in f	ormulation stored	d at 20°C)
---------------------------------------	-----------------	-------------------	--------------------

MF+PA5 capsules	cfu / capsule	cfu / g capsules
N_0 (Cfu at t=0 h)	8,96*10 ⁶	4,19*10 ¹⁰
2 weeks storage	3,66*10 ⁶	1,71*10 ¹⁰
2 weeks (prognosticated)	4,28*10 ⁶	1,97*10 ¹⁰
4 weeks storage	1,88*10 ⁶	8,78*10 ⁹
4 weeks storage (prognosticated)	1,78*10 ⁶	8,22*10 ⁹

Storage time	temperature	cfu/capsule	cfu/g capsules
6 months	20°C	5,52*10 ²	2,58*10 ⁶
12 months	20°C	3,00*10 ⁻²	1,40*10 ²
6 months	4°C	6,16*10 ⁶	2,87*10 ¹⁰
12 months	4°C	4,24*10 ⁶	1,98*10 ¹⁰

storage of cells suspended in NaCl resulted in 75 % cell loss.

[&]quot;Accelerated storage tests for fast product registration?" Prof. Dr. A. Patel, ABIM 21.-23.10.13, Basel

Accelerated storage test Reproducibility

Modeling, Simulation and Optimization of Biological Processes

Dr. rer.-nat. Sabrina Proß, Prof. Dr. phil. Bernhard Bachmann

FH Bielefeld University of Applied Sciences

Research & Development Focus:

- Object-oriented modeling and simulation using the hybrid Petri Net formalism
- Graphical (hierarchical) modeling and hybrid simulation and animation using Modelica
- Sensitivity analysis of hybrid dynamical systems
- Model based process optimization and steering/control
- Successfully applied to biological systems

Accelerated storage tests for fast biocontrol product registration? Yes, but...

Proposition to IBMA:

• Fund our working team to develop accelerated storage protocols

that stand up to registration authorities

• Either direct funding or within Horizon2020

FH Bielefeld University of

Applied Sciences

Conclusion

Open questions

- How to dry wet formulations for the test?
- How to pack formulations for the incubation?
- How many samples are needed? how many temperatures, what range, how long?
- What is "a mole of cells"?
- How can the Universal Gas Constant be linked to a multi-step degradation process in solids?
- Can the energy of inactivation really be temperature-independent?
- Can the unnecessary compression and inversion of the temperature scale be avoided?
- How accurate can and must the model be for registration?
- Differences between biocontrol microorganisms resp. products?
- How to measure shelf life (viability, pathogenicity, thermal markers?)
- Can this approach be used for volatile plant extracts?
- Can this approach be used to investigate the influence of drying protection on shelf life?

FH Bielefeld

Thank you for your attention!

