

Kichawi Kill, a new biological herbicide in Kenya

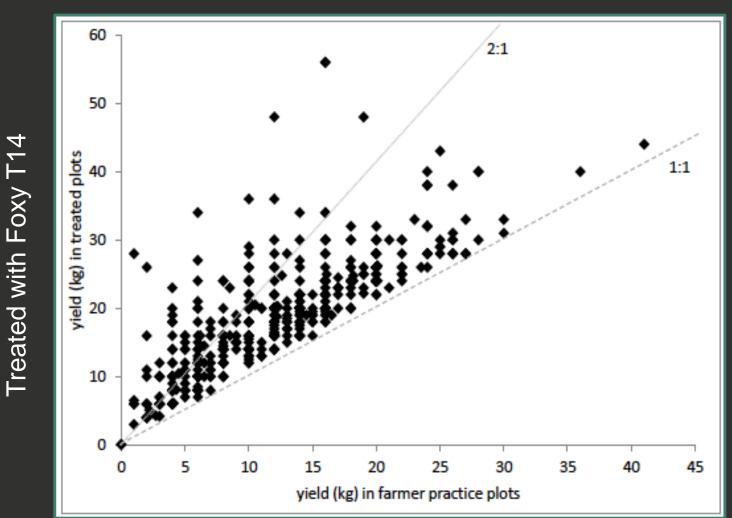
Peter Lüth Toothpick Company Ltd.

Striga hermonthica on Maize and Sorghum

The nice lilac blooming plants cause high yield losses!

Striga hermonthica on Maize and Sorghum

Control of Striga using Fusarium oxysporum



Farmers are putting
F. oxysporum infested rice into the planting holes.

Field trial results

Yield of maize on 500 trial locations either treated or not treated with Foxy 2014 (long) season

On any location above this line = greater yield in the treated plot

Average yield increase: 56.5%

Not treated with Foxy T14

Reason for the success

- → The special *Fusarium oxysporum* strain used
- → It does not only attack Striga hermonthica.
- → It has particularly selected to also excrete high amounts of amino acids into the soil. The amino acids are working additionally as a herbicide.

The Toothpick Company

Foundation of the Toothpick Company took place on November 16th, 2017

Shareholder

- Prof. David Sands
- German Foundation Welthungerhilfe
- Claire Baker
- Peter Lüth
- Winifred Ohrstrom Nichols
- Florence Oyosi (LIN)

Managing Director

Newton Kisala

The Toothpick Company

Objective of our work in Kenya

Building up a sustainable system of

- Financing
- Producing, and
- Distribution of the product "Kichawi Kill"

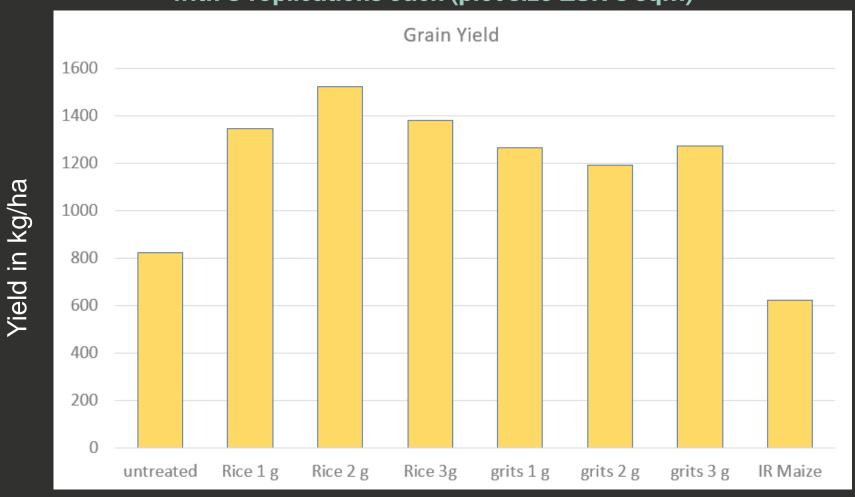
Way to reach the objectives

- Getting the registration
- ...
- . . .

Results of a GEP trial, yield as average of 3 locations with 3 replications each (plot size 18.75 sqm)

Table 11: Effect of Kichawi Kill on grain yield and yield parameters

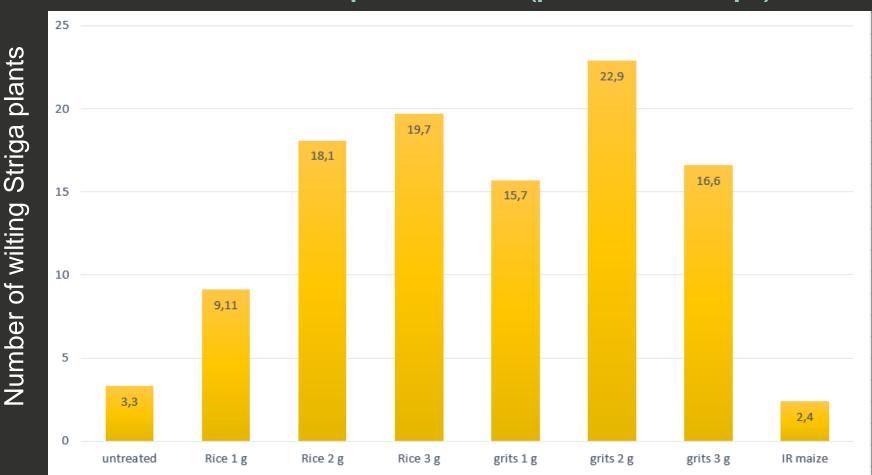
Treatment	Rate of	Means			% Increase Over Control		
	Inoculum	No. of	Weight of	Grain Yield	No. of	Weight of	Grain Yield
		Harvested	Cobs/plot	(Kg/ha)	Harvested	Cobs/plot	(Kg/ha)
		Cobs/Plot	(g)		Ears/Plot		
Rice substrate	1.00g	34.00a	2232.00ab	5300.00cd	100.00	140.78	81.69
Rice substrate	2.00g	42.00a	4677.00a	12733.00a	147.06	404.53	336.51
Rice substrate	3.00g	41.33a	3882.00a	9317.00ab	143.12	318.77	219.40
Maize cob grit substrate	1.00g	42.33a	4377.00a	10761.00ab	149.00	372.17	268.91
Maize cob grit substrate	2.00g	35.33a	3870.00a	6506.00bc	107.82	317.48	123.04
Maize cob grit substrate	3.00g	35.67a	3162.00ab	6826.00bc	109.82	241.10	134.01
IR maize	-	36.33a	3252.00ab	7706.00ab	113.71	250.80	164.18
Untreated	-	17.00Ъ	927.00ь	2917.00d	-	-	-
C.V (%)		25.50	42.70	40.10	-	-	-
L.S.D (0.05)		15.86	2464.28	5447.53	-	-	-


Means within columns followed by the same letter are not significantly different (P<0.05)

IR maize = Imazapyr resistant

GEP Trial (SGS) Long Season 2019

Results of a GEP trial, yield as average of 3 locations with 3 replications each (plot size 18.75 sqm)



Treatments

GEP Trial (SGS) Long Season 2019

Results of a GEP trial, number of wilting Striga plants per plot as average of 3 locations with 3 replications each (plot size 18.75 sqm)

Treatments

toothpick

Wilting Striga plants

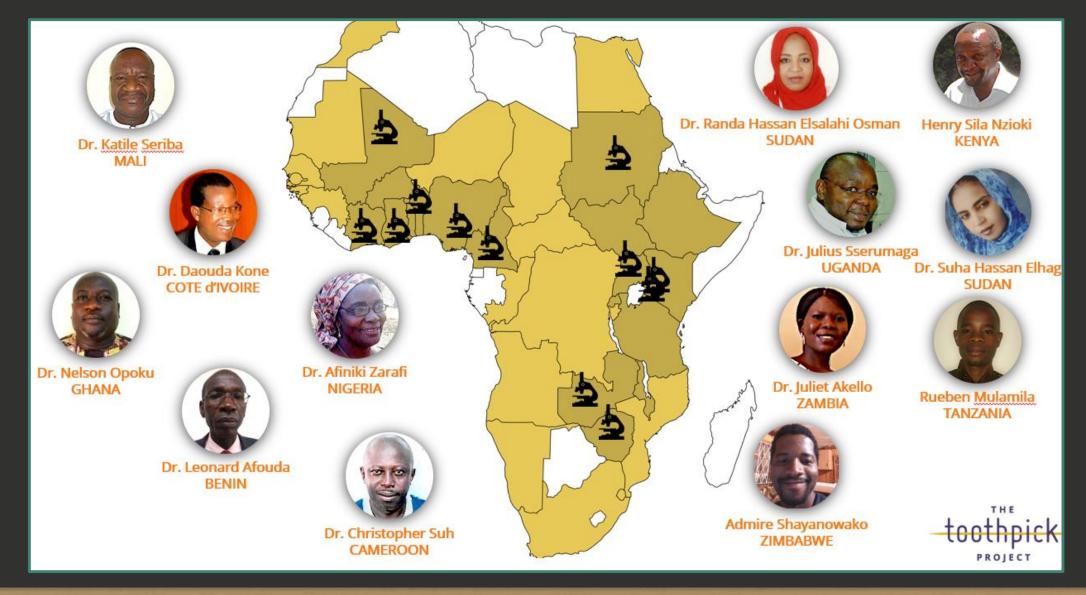
Effect of the Kichawi Kill application

The Toothpick Company

Objective of our work in Kenya

Building up a sustainable system of

- Financing
- Producing, and
- Distribution of the product "Kichawi Kill"


Way to reach the objectives

- Getting the registration (2021)
- Organizing of the inoculum production
- Building up of a franchise system responsible for the production and distribution of "Kichawi Kill" → 52 producers
- Financing the producers (VIPs) √
- Organizing the extension work ???
- Exporting the successful system to other countries

 12

Exporting of the project to other countries

Wooden dowels to be used as a Fusarium inoculum

Wooden dowels used in the furnature industry

1,000,000 wooden dowels delivered to the KALRO lab

Wooden dowels to be used as a Fusarium inoculum

Solid-state fermenter donated by Bayer CropScience Biologics GmbH

Fermenter filled with the wooden dowels

Wooden dowels to be used as a Fusarium inoculum

Dowels after fermentation, covered with the mycelium of *Fusarium oxysporum*

Mycelium of *Fusarium oxysporum* growing from a wooden dowel pin

Inoculation bottle

toothpick

How to manufacture the final product (Kichawi Kill)?

Cooking of the rice

Cleaning of the bucket

Filling of the bucket

Inoculation

shaking of the bucket

Colour of the rice after 3 days

Control of Striga using Fusarium oxysporum

Farmers are putting
F. oxysporum infested rice into the planting holes.

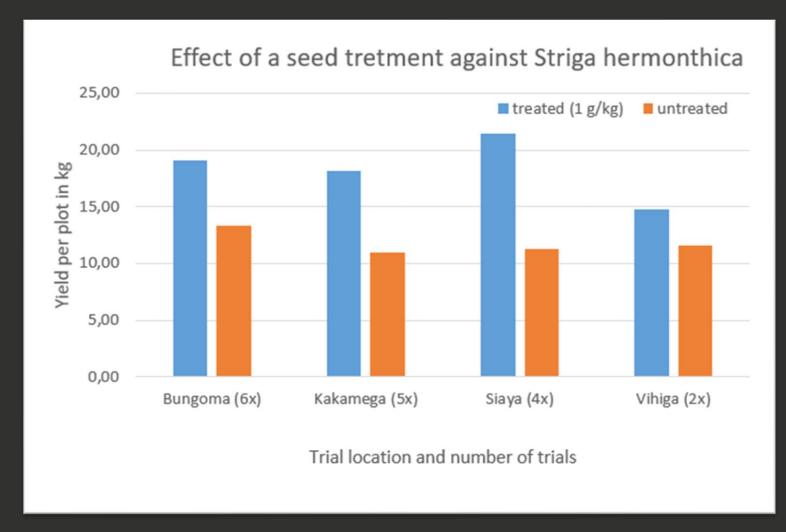
The Toothpick Spore Powder

- Very fine powder
- High spore concentration
- Very vigorous spores
- Spores germinate within one day
- Sufficient shelf life

Very vigorous Spores

Fusarium oxysporum colony after 24 hours

Fusarium oxysporum growing out of a maize grain



First trial results using a pilot batch

- Trial was carried out in 4 counties
 - Bungoma (6 farmers)
 - Kakamega (5 farmers)
 - Siaya (4 farmers)
 - Vihiga (2 farmers)
- Each farmer set a treated and an untreated plot (10 x 10 m)
- The seed was treated with 1 g/kg spore powder
- As a result the yield per plot in kg was evaluated

First trial results using a pilot batch

The differences in Bungoma, Kakamega and Siaya have been highly significant.

Thank you